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Lubor Buřič, Vladimı́r Janovský
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Preface

This book contains most papers presented at the international conference Programs
and Algorithms of Numerical Mathematics (PANM) held in Prague, Czech Republic,
May 28–31, 2006, in honor of Ivo Babuška’s 80th birthday. It is the thirteenth volume
in the series of the PANM proceedings.

The conference was organized by the Mathematical Institute of the Academy of
Sciences of the Czech Republic (ASCR) and continued the previous PANM seminars
(conferences) held in Aľsovice, Bratř́ıkov, Janov nad Nisou, Kořenov, Lázně Libverda,
and Dolńı Maxov in the period 1983–2004. The objective of this series of seminars
has been to provide a forum for presentation and discussion of advanced topics, new
approaches, and applications of computational methods; moreover, the participation
of PhD students and young scientists has been encouraged.

The conference was honored by the presence of Ivo Babuška, who spent three
days and four nights in Prague during his 2006 Europe Tour focused on conferences
organized in Prague, Zurich, and London to celebrate his birthday, and who used to
be a leading scientist in the Institute in the 1960s.

This year, the conference left its traditional Jizera Mountains locations, and was
held on the Prague premises of the Institute, to make the participation of distin-
guished foreign guests easier or even possible. To further emphasize the significance
of the conference, it was organized under the auspices of Professor Václav Pačes,
president of the ASCR, who, moreover, presented the Honorary Medal “De scientia
et humanitate optime meritis” (the ASCR highest distinction) to Ivo Babuška during
a closed meeting in the course of the conference.

It would not have been possible to organize the conference without the financial
support of the Czech Science Foundation, the Grant Agency of the ASCR, and the
ASCR (project no. 201/04/1503, project no. A1019201, and Institutional Research
Plan no. AV0Z10190503, respectively). The Organizing Committee included Jan
Chleboun, Michal Kř́ıžek, Petr Přikryl, Karel Segeth, Alena Šolcová, and Tomáš
Vejchodský.

More than 80 participants from the field took part in the conference. Although
most of them came from Czech universities and the institutes of the ASCR, for-
eign scholars were also present (Canada, China, Finland, Germany, the Netherlands,
United Kingdom, and the U.S.A.). They witnessed the presentation of the Honorary
Medal of the Ministry of Education, Youth, and Sports to Ivo Babuška on the third
day of the conference.

As regards the technical aspects of this book of proceedings, all the papers have
been reproduced directly from materials submitted by the authors, but an attempt
has been made to use a unified layout for each paper. We are indebted to Mrs. Hana
B́ılková for her effort in preparing the manuscripts for print and to Dr. Karel Horák
and Mr. Ladislav Capanda for their technical help with printing the book.
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The editors and organizers also wish to thank all scientists who peer reviewed
the submitted manuscripts. In many cases, their comments and recommendations
led to substantial improvements of the manuscripts.

Besides this PANM volume, a special issue of Applications of Mathematics (no. 3,
2007) consisting of selected papers presented at the conference will be published.

J. Chleboun, K. Segeth, T. Vejchodský
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NUMERICAL MODELING OF FLOW AND POLLUTION
DISPERSION OVER REAL TOPOGRAPHY∗

Luděk Beneš, Karel Kozel, Ivo Sládek

1. Introduction

The Atmospheric Boundary Layer (ABL) is the lowest part of the atmosphere.
Its thickness usually ranges from several hundred meters to approximately two kilo-
meters. The air pollution resulting from rapid industrialization has become a serious
environmental problem mainly in the North Bohemia region. In this contribution,
the influence of several types of obstacles on dustiness of coal depot in open coal
mine was numerically modeled.

2. Mathematical models

In our computations, the flow in ABL is assumed to be viscous, steady, incom-
pressible, turbulent and indifferently stratified. Two different mathematical and
numerical methods have been used for numerical simulations.
• The full RANS model
The first model is based on Reynolds Averaged Navier–Stokes equations. The gov-
erning equations are considered in the conservative, non-dimensional, and vector
form:

Wt + Fx + Gy + Hz = (KR)x + (KS)y + (KT )z + fv, (1)

where F = (u, u2+p, uv, uw, uC )T , G = (v, vu, v2+p, vw, vC )T , H = (w, wu, wv,
w2 + p, wC )T , R = (0, ux, vx, wx, Cx/σC)T , S = (0, uy, vy, wy, Cy/σC)T , T =
(0, uz, vz, wz, Cz/σC)T . W = (p/β2, u, v, w, C)T stands for the vector of unknown
variables the pressure, three velocity components V = (u, v, w)T , and the concentra-
tion of passive pollutant, respectively. Further fv denotes the volume force, σC is
the turbulent Prandtl’s number, β artificial compressibility coefficient and finally
K represents the turbulent diffusion coefficient, see equation (5). The artificial com-
pressibility method is used for the numerical solution of this model.
• Boussinesq equations
The NS equations are simplified by the so called Boussinesq approximation. The
instantenous values of the density, pressure and potential temperature can be de-
composed into two parts: the large synoptic scale part denoted by subscript 0 and

∗The financial support for the presented project is partly provided by the Research Plan MSM
No. 6840770003 and GAČR 205/06/0727.
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its perturbation denoted by ′′. Then the governing equations for the neutrally strat-
ified flow can be rewritten in the following form

(ρ0u)x + (ρ0v)y + (ρ0w)z = 0 , (2)

Vt + uVx + vVy + wVz = −∇p′′

ρ0

+
1

ρ0

{
[ρ0KVx]x + [ρ0KVy]y + [ρ0KVz]z

}
+ fv . (3)

The transport equations for the passive pollutant C is

Ct + uCx + vCy + wCz =

[(
K

σC

Cx

)

x

+
(

K

σC

Cy

)

y

+
(

K

σC

Cz

)

z

]
. (4)

2.1. Turbulence model

Closure of both systems of governing equations (1) and (2)–(4) is achieved by
a simple algebraic turbulence model designed for ABL flow. The model is based on
the Bousinesq hypothesis. The diffusion coefficient K has the following form in the
dimensional case

K = ν + νT , νT = l2
√

(uz)2 + (vz)2, (5)

where νT and ν are the turbulent and laminar viscosities. The mixing length l is
according to Blackadar computed from

l =
κ(z + z0)

1 + κ(z + z0)/l∞
, l∞ =

27 |Vg| 10−5

λ
, (6)

where κ is the von Karman constant, λ denotes the Coriolis parameter, z0 the rough-
ness length, l∞ denotes the mixing length for z →∞ and Vg is the geostrophic wind
velocity at the upper boundary of the domain.

3. Numerical methods

We have solved the governing systems of equations with stationary boundary con-
ditions and we suppose that we obtain the expected steady-state solution for t →∞.
Structured non-orthogonal grids made of hexahedral (in 3D case) and quadrilateral
(in 2D case) control cells are used.

3.1. Finite volume method

The finite volume method (cell-centered type) together with the 3–stage explicit
Runge–Kutta time integration scheme have been applied to solve equation (1). For
discretization of viscous fluxes, a second octohedral mesh was used.

The numerical method is theoretically second order accurate in space and time on
orthogonal grids. In addition, it must be stabilized by the artificial viscosity term of
fourth order to remove spurious oscillations in the flow-field due to sharp gradients
of computed quantities and also due to the central differences used for the space
discretization of convective terms.
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3.2. Finite difference method

A semi-implicit finite difference scheme has been used for the model (2)–(4). The
special combination of different nonsymmetric space discretizations at time level n
and n + 1 leads to the numerical scheme that is centered and second order both
in space and time. In order to improve the convergence of this method for large
Reynolds numbers the artificial viscosity terms either of the fourth or the second
order are added. To discretize the governing system (2)–(4) we have constructed
a non-orthogonal structured boundary–terrain fitted mesh.

3.3. Boundary conditions

Both models use the following boundary conditions.
• Inlet: u = U0(z/L)α, v = w = C = 0, where L is vertical length of the domain and
α is a power law exponent (we usually set α = 2/9).
• Outlet: ux = vx = wx = Cx = 0.
• Wall: the no-slip condition for the velocity components, ∂C/∂n = 0.
• Top: u = U0, v = 0, ∂w/∂z = ∂C/∂z = 0.
• Sides: periodic or non–periodic.

3.4. Validation of models

The first model (1) has been validated through the ERCOFTAC’s test-case of
fully developed channel flow over 2D polynomial-shaped hill mounted on a flat plate.
The Almeida’s experimental and the ERCOFTAC’s k − ε reference numerical data
have been used for the comparison, see [5].

The second model (2)–(4) has been validated on the experimental and reference
numerical data obtained by G.H. Kim [6]. Boundary layer type of flow over the
sinusoidal 2D-single-hills of different shapes has been tested [1].

The results from both validation studies has shown very good agreement with
the target data.

4. Numerical results

This practical problem is related to the flow over a surface coal field located in the
open coal mine in the North Bohemia. This numerical study is a continuation of the
project we have been solving since 2001 in cooperation with Brown Coal Research
Institute in Most. The major task was to design a safety obstacle close to a coal
depot in order to decrease the level of pollutant concentrations in the down stream
region which is inhabited. Several types of obstacles as solid wall, protective tree
line, forest block and shelter belt were tested.

The influence of the forest blocks and the protective walls on the dustiness of the
coal depot has been studied on the real topography of the coal depot.

The model of a real 3D relief was created on the basis of the topographic data
obtained by the Brown Coal Research Institute in Most. The whole topography has
been divided into two parts. The computational Domain 1, (see Figs. 1,2) is 800 m
long, 480 m wide and the upper side is at 1000 m. The coal depot has dimensions
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80× 20 m and it is situated at the origin. For better resolution of the flow field close
to the depot, the second Domain 2 400 × 240 m was imbedded (see Fig. 2). The
data obtained on Domain 1 were used as the boundary and initial conditions for the
computations on Domain 2.

Both domains have been discretized using 100×60×40 mesh cells, so the horizon-
tal resolution is 8 m on Domain 1 and 4 m on Domain 2. Both grids are significantly
thickened close to the ground with ∆zmin

≈ 0.6 m. Two variants were computed
in 3D: basic (without protective obstacles) and with two forest blocks situated be-
fore and behind the coal depot.

The solid wall was simulated by the column of a few cells. All the velocity
components have been set to zero in all of these cells. For the forest block, the
force vector ~fv includes the specific aerodynamic force corresponding to the drag
induced by the vegetation, i.e.

~fv = (−rh|V |u,−rh|V |v,−rh|V |w)T . (7)

Here the rh(z) denotes the total resistance parameter. The vertical profile of this
parameter has been set-up in the following way:

rh(z) =
{ rz/(0.75h) for 0 ≤ z/h ≤ 0.75,

r(1− z/h)/(1− 0.75) for 0.75 ≤ z/h ≤ 1.0,
(8)

where the drag coefficient value r is given a priori.

The other parameters are: mean free stream velocity U = 10 m/s, roughness pa-
rameter z0 = 0.1 m and power law exponent 2/9 are used for the inlet velocity profile
(Domain 1). The forest blocks are 10 m high with the drag coefficient r = 0.19. The
wall is 5 m high.

Fig. 1: Topography of the mine–Domain 1.

Fig. 2: Computational Domain 1, Do-
main 2 (larger rectangle), coal depot
(smaller rectangle).
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Fig. 3: Velocity vectors close to the coal
depot – basic situation. Colored by the con-
centration.
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Fig. 4: Velocity vectors close to the coal
depot – situation with two forests. Colored
by the concentration.
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Fig. 5: Concentration of the pollution in
the logarithmic scale completed by altitude
– basic situation.
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Fig. 6: Concentration of the pollution in
the logarithmic scale completed by altitude
– situation with two forests.

In Figs. 3 and 4 and Figs. 5 and 6 we can see the comparison of the flow field and
the pollution dispersion in two different cases – basic and with two forests before
and behind the coal depot. From these figures one can see considerable reduction of
the dustiness in the second case. It is due to the significant deceleration of the flow
behind the forest on the area of coal depot.

The majority of variants has been tested in 2D only. From Domain 1 the 2D mid-
dle cut (y = 0) was chosen. This cut was discretized by 800 × 40 cells (horizontal
resolution 1 m), vertical distribution is the same as in 3D. Also the other computa-
tional parameters are the same as in 3D.

The seven different positions and combinations of walls and forests were com-
puted in 2D case: basic – without protective obstacles (zak), with the forest block
before (a) behind (b) and on both sides (ab) of the depot, and with the wall be-
fore (fa) behind (fb) and on both sides (fab).
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Fig. 7: Basic variant – velocity compo-
nent u.

Fig. 8: Basic var. – velocity component u
with streamlines close to the coal depot.

Fig. 9: Variant ab – velocity component u
with streamlines close to the c.d.

Fig. 10: Variant fab – velocity compo-
nent u with streamlines close to the c.d.

Fig. 11: The longitudinal distribution of
near-ground velocity in case of forest.

Fig. 12: The longitudinal distribution of
near-ground velocity in case of walls.

Figs. 7–10 show the comparison of the basic variant with two different cases
in 2D: with forest on both sides (ab) of the coal depot and also with a wall on
both sides (fab). In Fig. 10 large recirculation zones behind the walls are shown. In
contrast, the flow going through the forest is decelerated smoothly without recircu-
lation, Fig. 9.

In our model, the source intensity is proportional to the vertical velocity gradient,
and the mesh is uniform on the coal depot. Therefore the local source intensity is
proportional to the ground velocity.

Fig. 11 and Fig. 12 shows the longitudinal distribution of near ground velocity
for an obstacle of type forest block (left) and walls (right).
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NUMERICAL ANALYSIS OF MATHEMATICAL MODEL OF HEAT
AND MOISTURE TRANSPORT IN CONCRETE AT HIGH

TEMPERATURES∗

Michal Beneš, Petr Mayer

Abstract

In this paper, we present a nonlinear mathematical model for numerical analysis
of the behaviour of concrete subject to transient heating according to the standard
ISO fire curve. This example allows us to analyse and better understand physical
phenomena taking place in heated concrete (thermal spalling).

1. Balance equations of mathematical model

The behaviour of concrete at high temperature is dependent on its composite
structure, on the physical and chemical composition of the cement paste, which is
a highly porous, hygroscopic material. In the whole temperature range, the gas phase
is a mixture of dry air and water vapour. Therefore, the moist concrete is modelled
as a multiphase material.

The global multiphase system is treated within the framework of averaging the-
ories starting from microscopic level and applying mass, area and volume averaging
operators to the local form of governing equations.

The mathematical model consists of the following balance equations for the
α-phase, in particular w, resp. g, resp. ga, resp. gw denotes the liquid phase,
resp. the gas phase, resp. the dry air, resp. water vapour,

Dα

Dt
(ηαρα) + (ηαρα)∇ · vα = êα

β , α, β = w, gw, ga, α 6= β, (1)

(ρC)
∂T

∂t
+ (ρCv)∇ · T −∇ · (λ∇T ) = −ṁphase∆hphase + ṁdehydr∆hdehydr, (2)

where ηα is the volume fraction of phase α,

ηw = φSw, ηg = φSg, Sw + Sg = 1,

where Sw, resp. Sg denotes the degree of water saturation, resp. the degree of gas sat-
uration, φ is the porosity, ρα and vα denote the averaged density and mass-averaged
velocity of the α-phase. The mass source term êα

β on the right-hand side represents

∗This research has been supported by Ministry of Education, Youth and Sports of the Czech
Republic, No. 1M6840770001 within the frame of research centre CIDEAS and VZ 03 CEZ MSM
6840770003.
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exchange of mass with interfaces separating individual phases (phase changes), as
well as the terms on the right hand side of (2) represent the energy required for
evaporation of liquid water and the energy required for release of bound water by
dehydration. The convection term (ρCv)∇ · T in equation (2) is ignored provided
that the transfer of energy by convection is included in the empirical relationship for
the thermal conductivity λ = λ(T ).

2. Boundary and initial conditions

The model consisted of a rectangular section of the concrete wall, 0.1 m thickness,
exposed to transient heating from one side according to the standard ISO FIRE curve

T∞(t) = TISO−FIRE(t) = 345 log(8t + 1) + 293.15, [t] = min. (3)

In the case of heat transfer through the boundary at normal temperatures, the
boundary conditions correspond to the Newton’s law of cooling (Neuman’s condi-
tions)

−(ρwvl∆hphase − λ∇T ).n = 0, (4)

−(ρgwvg + ρwvl + ρgv
d
gw).n = 0. (5)

On the part of the boundary, where the high temperature is analyse, the radiative
boundary conditions

(ρwvl∆hphase − λ∇T ).n = αc(T − T∞) + eσ(T 4 − T 4
∞), (6)

(ρgwvg + ρwvl + ρgv
d
gw).n = βc(ρgw − ρgw∞), (7)

are of importance, where the terms on the right hand side of (6) represent the heat
energy dissipated by convection and radiation to the surrounding medium, and the
term on the ride hand side of (7) is the substance dissipated into the surrounding
medium.

The initial conditions for concrete were set as follows: the uniform temperature
T = 293.15 K, the uniform gas pressure 101325 Pa and the uniform capillary pressure
97.3 MPa, according to ρgw and ρga.

3. Thermodynamic approach, constitutive relationships and material data

Dry air, water vapour and their mixture are assumed to behave as perfect gases,
therefore Dalton’s law and the Clapeyron equation are assumed as state equations.
Water vapour pressure, pgw is obtained from the Kelvin equation. As the constitutive
equations for fluid phases (capillary water, gas phase) the multiphase Darcy’s law
has been applied.

Mathematical model of multiphase flow and heat transfer in concrete contains
a several parameters and coefficients describing the properties of concrete and fluids:
porosity φ = φ(T ), saturation S = S(pc), solid phase density ρ = ρ(T ), absolute
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permeability K = K(pg, T ), relative permeability of gas phase Krg = Krg(pc, T ),
relative permeability of liquid phase Krw = Krw(pc, T ), gas-phase dynamic viscosity
µg = µg(pg, pc, T ), liquid phase dynamic viscosity µw = µw(T ), thermal capacity of
the system ρCp(T ), thermal conductivity of the system λ(T ), enthalpy of vaporisation
∆hvap(T ). Formulas are given in detail in [3].

The relationship between capillary pressure and saturation in multiphase flow
problems demonstrates memory effects and hysteresis. Differential equations with
hysteresis have been the subject of studies, from the mathematical point of view,
since 1960s. Hassanizadeh and Gray employ conservation laws for mass, momentum
and energy, and the second law of thermodynamics in order to develop constitutive
equations which describe two-phase flow in a porous medium (see [1], [2]). The
following combination of terms contributes to the entropy production Λ:

TΛ = . . .− φṠw(pg − pw − pc) + . . . ≥ 0.

For a linear theory, Hassanizadeh and Gray have suggested the relationship

pg − pw − pc(S) + τ(S)Ṡ = 0,

where pw, resp. pg, designate the water, resp. the gas, pressure.
Under equilibrium condition without dynamic effects in the capillary relation the

following definition of the capillary pressure can be used

pc = pg − pw, Sw = Sw(pc). (8)

In some particular cases, it is possible to use relation (8) even if the material system
demonstrates hysteresis. For instance, in slow processes with monotonically decreas-
ing (or increasing) saturation. Equation (8) is usually determined from experiments.
In the literature several approximations of the relationship (8) have been suggested.
In the present model the relationship

Sw(pc) = Sw
r + (Sw

s − Sw
r )

[
1 +

(
pc

pc
b

)n]−m

(9)

is employed. In (9) pc
b denotes the air entry value, also referred to as bubbling

pressure, which can be viewed as a characteristic pressure that has to be reached
before the air actually enters the pores; m and n are empirical constants to fit the
curves to experimental data.

A further step of this research is the influence of the dynamic or non-equilibrium
effects and hysteresis, e.g. Ṡ 6= 0, to hydro-thermal behavior of rapidly heated
concrete.

4. Numerical algorithm

The space discretization of the energy conservation equation (2) is carried out
by means of the finite element method (h = 0.001 m), we obtain the finite element
model in the form

C(T)Ṫ−K(T)T = f(T, ρgw, ρga). (10)
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Time discretization of (10) is accomplished through an implicit difference scheme
compared with T (∆t = 1 s)

[C(Tn+1) + ∆tK(Tn+1)]Tn+1 = C(Tn+1)Tn + f(Tn+1, ρgw(n), ρga(n)). (11)

The Newton-Raphson method is applied to the nonlinear system (11) in the following
iteration procedure: Let us denote

Φ(T
(l)
n+1) =

[
Cij(T

(l)
n+1) + ∆tKij(T

(l)
n+1)

]
Tn+1−Cij(T

(l)
n+1)Tn+fi(T

(l)
n+1, ρgw(n), ρga(n)),

then the solution at the end of the (l + 1)st iteration is then given by

T
(l+1)
n+1 = T

(l)
n+1 − J−1

Φ (T
(l)
n+1)Φ(T

(l)
n+1), (12)

where JΦ is the (three-diagonal) Jacobi matrix.
Now we modify the dry air conservation equation and the water species conser-

vation equation to the form

φ
∂

∂t
[(1− S)ρga] + (1− S)ρga

∂φhydr

∂t
+∇.(ρgavg) +∇.(ρgv

d
ga) = 0, (13)

φ
∂

∂t
[(1− S)ρgw] + (1− S)ρgw

∂φhydr

∂t
+∇.(ρgwvg) +∇.(ρgv

d
ga) =

−φ
∂

∂t
(Sρw)− Sρw

∂φhydr

∂t
−∇.(ρwvl)− ∂

∂t
(∆mhydr) (14)

with regard to Dalton’s law and Clapeyron equations of state of perfect gases ρg =
ρgw + ρga to the form

φ
∂

∂t
[(1− S)ρga]+(1−S)ρga

∂φhydr

∂t
+∇.(φ(1−S)ρgavg)+∇.(φ(1−S)ρgv

d
ga) = 0, (15)

φ
∂

∂t
[(1− S)ρg + Sρw] + [(1− S)ρg + Sρw]

∂φhydr

∂t
+

+∇.(φ [(1− S)ρg + Sρw]vg) +∇.(φSρw(vw − vg)) = − ∂

∂t
(∆mhydr). (16)

Now we introduce the substitution X = (1 − S)ρg + Sρw, Y = (1 − S)ρga to (15)
and (16)

φ
∂Y

∂t
+ Y

∂φhydr

∂t
+∇.(φYvg) +∇.(φ(1− S)ρgv

d
ga) = 0, (17)

φ
∂X

∂t
+ X

∂φhydr

∂t
+∇.(φXvg) +∇.(φSρw(vw − vg)) = − ∂

∂t
(∆mhydr). (18)

After discretization of the latter equaitons we get

Xj
i .

[
φj

i −∆t1
Ah

ρs

(T n
i − T n−1

i )

∆t
+ ∆t1

φj
i (vg)

j−1
i

h

]
=
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= φj
iX

j−1
i + ∆t1

Xj
i−1(vg)

j−1
i−1φj

i−1

h
−∆t1Ah

T n
i − T n−1

i

∆t
−

−∆t1
φj

iS
j−1
i (ρw)j

i (vw − vg)
j−1
i − φj

i−1S
j−1
i−1 (ρw)j

i−1(vw − vg)
j−1
i−1

h
, (19)

Y j
i .

[
φj

i −∆t1
Ah

ρs

(T n
i − T n−1

i )

∆t
+ ∆t1

φj
i (vg)

j−1
i

h

]
= φj

iY
j−1
i + ∆t1

Y j
i−1(vg)

j−1
i−1φj

i−1

h
+

+∆t1
φj

i (1− Sj−1
i )(ρg)

j
i (v

d
ga)

j−1
i − φj

i−1(1− Sj−1
i−1 )(ρg)

j
i−1(v

d
ga)

j−1
i−1

h
, (20)

where

Xj
i = (1− Sj

i )(ρg)
j
i + Sj

i (ρw)j
i ,

Y j
i = (1− Sj

i )(ρga)
j
i .

Since ρg = ρgw + ρga, then

Xj
i = (1− Sj

i )(ρgw)j
i + Sj

i (ρw)j
i + Y j

i . (21)

Let us denote F((ρgw)j
i ) = (1− Sj

i )(ρgw)j
i + Sj

i (ρw)j
i −Xj

i + Y j
i , where

[
S((pc)

j
i )

]j

i
=

[
1 +

(
(pc)

j
i

pc
b

)n]−m

,
[
pc((ρgw)j

i )
]j

i
= −(ρw)j

i

RT j
i

Mw

ln

[
T j

i R

(pgws)j
i

(ρgw)j
i

]
.

For given Xj
i , Y j

i from (19) and (20), we find a solution (ρgw)j
i of the nonlinear

equation (21) written in the form

F((ρgw)j
i ) = 0, (22)

with Newton’s iteration procedure; the solution at the rst iteration is given by

{
(ρgw)j

i

}r
=

{
(ρgw)j

i

}r−1 −
F ′

({
(ρgw)j

i

}r−1
)

F
({

(ρgw)j
i

}r−1
) , (23)

where

F ′
({

(ρgw)j
i

}r−1
)

= 1− S
(
pc

(
(ρgw)j

i

))
+

∂S

∂pc

.p′c
(
(ρgw)j

i

)
((ρw)j

i − (ρgw)j
i ),

∂S

∂pc

(pc) = −mn

pc
b

(
pc

pc
b

)n−1 [
1 +

(
pc

pc
b

)n]−m−1

, p′c (ρgw) = − TRρw

Mwρgw

.

From boundary conditions (4) and (5) we get

ρgw(vg + vd
gw − βc) + ρgav

d
gw = −ρwvl − βcρgw∞, (24)
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patm = pg = pga + pgw =
TR

Ma

ρga +
TR

Mw

ρgw, (25)

where ρgw(0) and ρga(0) are the solutions of (24) and (25) and finally

Xj
0 = (1− Sj

0)(ρgw(0) + ρga(0)) + Sj
0(ρw)j

0, (26)

Y j
0 = (1− Sj

0)ρga(0). (27)

Analogously, for the boundary conditions (6) and (7), we get

Xj
l = (1− Sj

l )(ρgw(l) + ρga(l)) + Sj
l (ρw)j

l , (28)

Y j
l = (1− Sj

l )ρga(l). (29)

5. Numerical results

Numerical algorithm was implemented in the model by coding in FORTRAN.
Following figures show developments of temperature, saturation and water vapour
pressure. An increase of temperature and capillary pressure and corresponding de-
crease of saturation are observed only in the confined layer in the range 50 mm from
the heated surface. The swift evaporation of water inside the wall implies the rapid
desaturation in the zone of increased vapour pressure. Analysis of these results al-
lows for better understanding of hygro-thermal behaviour of concrete elements near
the heated boundary.

6. Thermal spalling

In 1996 the fire with temperatures up to 700 ◦C occurred in the transport Tunnel
connecting England and France, as in the similar case in 1999 in St. Gotthard tunnel,

Fig. 1: Temperature distributions.
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Fig. 2: Saturation distributions.

Fig. 3: Vapour pressure distributions.

the fire destroyed the concrete structure by thermal spalling over a length of a few
hundred meters.

An interesting phenomenon, very specific for heated concrete, is the so-called
thermal spalling, which can sometimes be explosive. Its physical causes are still not
fully understood. Two main phenomena are generally considered to explain this
transient thermal behavior of High Performance Concrete (see [4], [5], [6]):

• generation of internal vapor pressures, which exceed the local tensile strength
of the material,

• thermo-mechanical stresses associated with thermal gradients increased by the
local consumption of energy associated with vaporization and dehydration.
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Fig. 4: Thermal Spalling Hypothesis.
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HIERARCHICAL FEM: STRENGTHENED CBS INEQUALITIES,
ERROR ESTIMATES AND ITERATIVE SOLVERS∗

Radim Blaheta

Abstract

This paper describes natural decomposition of hierarchical finite element spaces,
discusses a characterization of this decomposition via strengthened CBS inequality and
uses this decomposition for development of hierarchical error estimates and iterative
solution methods.

1. Introduction

A subsequent refinement of a finite element grid provides a sequence of nested
grids and hierarchy of nested finite element spaces as well as a natural hierarchi-
cal decomposition of these spaces. This decomposition can be characterized by the
constant from the corresponding Cauchy–Bunyakowski–Schwarz (CBS) inequality.
In Section 2, we summarize some older and recent results concerning this constant.
The CBS analysis is exploited in Section 3 for investigation of the so called hierar-
chical error estimates. We shall show that such estimates are robust with respect
to coefficient jumps and anisotropy as well as to the element shape. Hierarchical
error estimates can be used for both global and local error assessment. Local esti-
mates can be used for local refinement and construction of hierarchy of locally refined
spaces. In Section 4, we outline the hierarchical decomposition in this case. Note
that this decomposition can be used for defining various iterative solution methods
and preconditioners.

2. FE hierarchy and natural decomposition

Let us consider a model boundary value problem in Ω ⊂ Rd (d = 2, 3),

find u ∈ V : a(u, v) = b(v) ∀v ∈ V, (1)

where V = H1
0 (Ω), b(v) =

∫
Ω

fvdx for f ∈ L2(Ω) and

a(u, v) =

∫

Ω

d∑
ij

kij
∂u

∂xi

∂v

∂xj

dx .

Above K = (kij) is a symmetric and positive definite matrix of coefficients.

∗This work was supported by grant No. 1ET400300415 of the Academy of Sciences of the Czech
Republic.
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We also consider a coarse triangular or tetrahedral finite element grid TH of Ω and
a fine grid Th, which arises by a refinement of the coarse elements. By NH and Nh,
we denote the set of nodes corresponding to TH and Th, respectively. Naturally,
Nh = NH ∪N+

H , where N+
H is the complement of NH in Nh .

Now, we can introduce the finite element spaces UH and Uh (UH ⊂ Uh) of func-
tions which are continuous and linear on the elements of the triangulation TH , and Th,
respectively. We shall also speak about a hierarchy of triangulations and finite ele-
ment spaces.

Let {φH
i } and {φh

i } be the standard nodal finite element bases of UH and Uh ,
i.e. φH

i (xj) = δij for all xj ∈ NH , φh
i (xj) = δij for all xj ∈ Nh . Then we can also

introduce a hierarchical basis {φ̄h
i } in Uh ,

φ̄h
i =

{
φh

i if xi ∈ N+
H ,

φH
i if xi ∈ NH .

It gives a natural hierarchical decomposition of the space Uh,

Uh = UH ⊕ U+
H , (2)

where U+
H = span {φh

i , xi ∈ N+
H } .

The decomposition (2) is characterized by the angle between the subspaces or the
strengthened CBS inequality with the constant γ = cos(UH , U+

H ), which is defined
as follows:

γ = cos(UH , U+
H )

= sup

{
| a(u, v) |√

a(u, u)
√

a(v, v)
: u ∈ UH , a(u, u) 6= 0, v ∈ U+

H , a(v, v) 6= 0

}
. (3)

If Th arises from TH by a regular division of the coarse grid triangles into m2

congruent triangles in 2D or a regular division (given by the affine mapping to a ref-
erence rectangular tetrahedra) of the coarse grid tetrahedra into m3 tetrahedra (see
Fig. 1) and if the coefficients K = (kij) are constant on the coarse grid elements then
for general anisotropic coefficients and arbitrary shape of the coarse grid elements,
we get

γ ≤
√

m2 − 1

m2
and γ ≤

√
(m2 − 1)(m2 + 2)

m2(m2 + 1)

for 2D and 3D case, respectively. See [1], [4] and the references given there for more
details.

Note that in special cases we get smaller values of γ. For example, γ ≤
√

3/8

for isotropic coefficients and equilateral triangles [8], γ ≤
√

1/2 for isotropy and

rectangular finite elements [8], [1] or γ ≤
√

3/4 for orthotropy kij = kiδij and
rectangular tetrahedra [4] .
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Fig. 1: Decompositions in 2D and 3D with multiplicity m = 2.

3. Hierarchical error estimates

Hierarchical error estimates were introduced in papers by R.E. Bank, see [3]. The
aim is to estimate the error eH = u−uH , where uH ∈ VH is the finite element approx-
imation of the exact solution u ∈ V of the considered boundary value problem (1),
VH = UH ∩ V .

Let us also introduce the spaces Vh = Uh ∩ V and V +
H = U+

H ∩ V, Vh = VH ⊕ V +
H

and let uh be the finite element approximation of u in Vh, i.e.

uh ∈ Vh : a(u− uh, z) = 0 ∀z ∈ Vh . (4)

Lemma 1 Let there is a positive constant β < 1 such that

‖ u− uh ‖a≤ β ‖ u− uH ‖a, (5)

where ‖ v ‖a=
√

a(v, v). Then

1

1 + β
‖ uH − uh ‖a≤‖ u− uH ‖a≤ 1

1− β
‖ uH − uh ‖a . (6)

Proof see e.g. [3].
The assumption (5) is crucial and need not be fulfilled in any case, see e.g. [6]

for a counterexample. If this assumption holds, then

η =‖ uH − uh ‖a (7)

is the two-level a posteriori error estimate.
For practical use, the computation of η is too expensive. The hierarchical decom-

position Vh = VH ⊕ V +
H then suggest to use an approximation wh to uh,

wh ∈ V +
H : a(u− uH − wh, z) = 0 ∀z ∈ V +

H . (8)
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Lemma 2 Let the saturation assumption (5) holds and ηH =‖ wh ‖a. Then

1

(1 + β)(1 + γ)
ηH ≤‖ u− uH ‖a≤ 1

(1− β)(1− γ)
ηH , (9)

where γ = cos(VH , V +
H ).

Proof see e.g. [3].
Note that ηH is called the hierarchical error estimate.
Let us now consider algebraic formulation of the fine grid finite element approx-

imation in the hierarchical basis. We get

[
A11 A12

A21 A22

] [
u1

u2

]
=

[
b1

b2

]

where u1 and u2 correspond to N+
H \ ∂Ω and NH \ ∂Ω, respectively, and

A11 = [a(φh
j , φ

h
i ) : xi, xj ∈ N+

H \ ∂Ω] ,

A12 = [a(φH
j , φh

i ) : xi ∈ N+
H \ ∂Ω, xj ∈ NH \ ∂Ω] , etc .

Then

uH is represented by w2 : A22w2 = b2

wh is represented by w1 : A11w1 = b1 − A12u2

and η1 =‖ wh ‖a=
√
〈A11w1, w1〉 =‖ w1 ‖A .

The computation of w1 can be still too expensive and we can be interested in
a possible simplification, e.g. by approximation Ā11 ∼ A11 such that

w̄1 : Ā11w̄1 = b1 − A12u2

can be computed in a number of operations proportional to the number of elements
in N+

H (i.e. O(#N+
H ) operations) and provide a good approximation to w1.

The simplest case is to replace A11 by its diagonal, but then the relation between
‖ w̄1 ‖A and ‖ w1 ‖A depends on anisotropy and/or shape of the elements.

For 2D case, another approximation can be constructed as in the paper [2]. It
gives nice bounds independent on the discretization size and both anisotropy and
element shape,

(1−
√

7

15
) ‖ w̄1 ‖A≤‖ w1 ‖A≤ (1 +

√
7

15
) ‖ w̄1 ‖A .

Moreover, w̄1 can be computed in O(#N+
H ) operations.
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4. Locally refined hierarchy

The hierarchical error estimators discussed in the previous section are global, but
their value can be computed from contributions of macroelements corresponding to
coarse grid elements to ‖ wh ‖a. These local contributions or another local estimators
can be used for determination of these coarse grid elements, which should be refined.
After their refining, we can either work with special hanging nodes or make another
refinement of the surrounding elements by their bisection, see Fig. 2.

Fig. 2: Local refinement with hanging nodes (left) and bisection (right).

Again we get spaces UH and Uh and the natural decomposition Uh = UH ⊕ U+
H .

The constant γ = cos(UH , U+
H ) , is then important for special iterative solution meth-

ods like FAC or BEPS, see [7], [5] and the references therein.

Theorem 1

• In the case of local refinement with hanging nodes, γ remains the same as in
the case of global refinement.

• In the case of local refinement with bisection, we obtain the same constant γ
only in special cases (e.g. orthotropic problems kij = kiδij and refinement like
on Fig.2 right). Generally, γ is not further robust with respect to anisotropy
or the element shape.

The proof of the first statement can be found in [7], the second statement will be
discussed in a forthcoming paper.

5. Conclusions

The paper shows the hierarchical finite element method with hierarchical error
estimates, which are robust with respect to coefficients jumps between coarse ele-
ments and both physical and numerical anisotropy. The finite element problems on
locally refined grids can be solved by iterative methods, see [7] and [5]. The con-
vergence of these methods can be again estimated with the aid of the strengthened
CBS constant.
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ACCURACY INVESTIGATION OF A STABILIZED FEM FOR
SOLVING FLOWS OF INCOMPRESSIBLE FLUID∗

Pavel Burda, Jaroslav Novotný, Jakub Š́ıstek

Abstract

In computer fluid dynamics, employing stabilization to the finite element method
is a commonly accepted way to improve the applicability of this method to high
Reynolds numbers. Although the accompanying loss of accuracy is often referred, the
question of quantifying this defect is still open. On the other hand, practitioners call
for measuring the error and accuracy. In the paper, we present a novel approach for
quantifying the difference caused by stabilization.

Dedicated to Professor Ivo Babuška on the occasion of his 80th birthday.

1. Introduction

The finite element method equipped with stabilization has proven to be a powerful
tool for solving flows of incompressible fluids with high Reynolds numbers. But
applying stabilization can lead to a change of the approximate solution in a serious
way, as was discussed in [2].

The aim of our present research is to quantify the difference and find a way to
predict it. Application of a posteriori error estimates seems to be a promising way
to face these tasks.

Several numerical examples are presented to show the effect of stabilization and
to investigate the accuracy.

2. Mathematical model

The considered mathematical model is the system of Navier-Stokes equations in
two space dimensions (1) accompanied by the continuity equation (2). The aim is
to search the vector of velocity u(x, t) = (u1(x, t), u2(x, t)) ∈ [C2(Ω)]2 and pressure
p(x, t) ∈ C1(Ω)/R such that

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = f in Ω× [0, T ] , (1)

∇ · u = 0 in Ω× [0, T ] , (2)

where ν denotes kinematic viscosity and f(x, t) stands for intensity of volume force.

∗This research has been supported by grant No. 106/05/2731 of the Grant Agency of the Czech
Republic.
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Boundary conditions (3)–(4) are allowed. For time dependent problems, initial
condition (5) is considered.

u = g on Γg × [0, T ] (3)

−ν(∇u)n + pn = 0 on Γh × [0, T ] (4)

u = u0 in Ω, t = 0 (5)

For the solution by the finite element method, we consider the weak formulation
of the problem (1)–(2). We introduce function spaces based on Sobolev spaces

Vg =
{
v = (v1, v2) | v ∈ [H1(Ω)]2;Tr vi = gi, i = 1, 2, on Γg

}
,

V =
{
v = (v1, v2) | v ∈ [H1(Ω)]2;Tr vi = 0, i = 1, 2, on Γg

}
.

Now, we seek velocity u(x, t) = (u1(x, t), u2(x, t)) ∈ Vg such that u − ug ∈ V and
pressure p(x, t) ∈ L2(Ω)/R for t ∈ [0, T ] satisfying
∫

Ω

∂u

∂t
· vdΩ +

∫

Ω

(u · ∇)u · vdΩ + ν

∫

Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫

Ω

f · vdΩ (6)
∫

Ω

ψ∇ · udΩ = 0 (7)

for any v ∈ V and ψ ∈ L2(Ω). Operation “:” used in (6) is defined as

∇u : ∇v =
∂ux

∂x

∂vx

∂x
+

∂ux

∂y

∂vx

∂y
+

∂uy

∂x

∂vy

∂x
+

∂uy

∂y

∂vy

∂y
. (8)

3. Approximation of the problem by FEM

We use Hood-Taylor finite elements, which lead to the following function spaces

Vgh =
{
vh = (vh1 , vh2) ∈ [C(Ω)]2; vhi

|K∈ R2(K), i = 1, 2, vh = g in nodes on Γg

}

Qh =
{

ψh ∈ C(Ω); ψh |K∈ R1(K)
}

Vh =
{
vh = (vh1 , vh2) ∈ [C(Ω)]2; vhi

|K∈ R2(K), i = 1, 2, vh = 0 in nodes on Γg

}

where Vgh is the space for approximation of velocities, Qh for pressure and test func-
tions for the continuity equation, and Vh for test functions for momentum equations.
Here

Rm(K) =

{
Pm(K), if K is a triangle
Qm(K), if K is a quadrilateral

and Pm, Qm have the usual meaning. Among all the advantages of these elements,
we consider it to be rather important, that they lead to functions satisfying Babuška-
Brezzi (inf-sup) stability condition (9).

∃CB > 0, const. ∀ψh ∈ Qh ∃vh ∈ Vh (ψh,∇ · vh)0 ≥ CB‖ψh‖0‖vh‖1 (9)
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4. SemiGLS stabilization technique

In [4], semiGLS stabilization technique was derived as a modification of Galerkin
Least Squares method, proposed by Hughes, Franca, and Hulbert [3]. We search the
approximate velocity uh ∈ Vgh and pressure ph ∈ Qh satisfying in Ω

BsGLS(uh, ph;vh, ψh) = LsGLS(vh, ψh), ∀vh ∈ Vh, ∀ψh ∈ Qh , (10)

where

BsGLS(uh, ph;vh, ψh) ≡
∫

Ω

∂uh

∂t
· vhdΩ +

∫

Ω

(uh · ∇)uh · vhdΩ

+ ν

∫

Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ +

∫

Ω

ψh∇ · uhdΩ +

+
N∑

K=1

∫

K

[
∂uh

∂t
+ (uh · ∇)uh − ν∆uh +∇ph

]
· τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ,

LsGLS(vh, ψh) ≡
∫

Ω

f · vhdΩ +
N∑

K=1

∫

K

f · τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ .

Here τ denotes stabilization parameter. The way to determine it is mentioned in [2].
Index sGLS is an abbreviation of semiGLS.

5. Evaluating of the accuracy

A straightforward way to evaluate the effect of stabilization is to compute the dif-
ference between solution with and without stabilization. This method was proposed
in [2] accompanied by numerical examples and is applicable in the range of Reynolds
numbers, where we can solve the problem both with and without stabilization. Such
difference represents “pure distortion” caused by stabilization.

To get the idea about achieved accuracy of our solution, it is also suitable to
apply a posteriori error estimates. We use following estimate derived for Hood-
Taylor elements

U2(u1 − u1h, u2 − u2h, p− ph) ≤ E2(u1h, u2h, ph) , (11)

where the terms represent

U2(u1 − u1h, u2 − u2h, p− ph) = ‖(eu1 , eu2)‖2
1,K + ‖ep‖2

0,K ,

E2(u1h, u2h, ph) = C
[
h2

K

∫

K

(
r2
1(u1h, u2h, ph) + r2

2(u1h, u2h, ph)
)
dΩ

+

∫

K

r2
3(u1h, u2h, ph)dΩ

]
,
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and r1(u1h, u2h, ph), r2(u1h, u2h, ph), and r3(u1h, u2h, ph) stand for residuals of the
system (1)–(2); (u1, u2, p) denotes an exact solution, (u1h, u2h, ph) an approximate
solution computed by FEM, and (eu1 , eu2 , ep) = (u1 − u1h, u2 − u2h, p− ph) an error
of approximate solution. Constant C is determined from a numerical experiment
described in [1], as well as details on the a posteriori estimates.

Such approach is applicable for any Reynolds number, for which we can find solu-
tion by the stabilized method and estimates the whole difference between a stabilized
solution and an exact one.

6. Results of numerical experiments

To demonstrate the approach using a posteriori error estimates, we present results
for a problem of a lid driven cavity and a channel with a sudden extension of diameter.
Both problems are steady and the results for measuring distortion caused by the
stabilization can be found in [2].

In Figures 1 – 2, we can observe the effect of stabilization on streamlines inside
cavity for three levels of mesh fineness. A posteriori error estimates in the cavity are
presented in Figures 3 – 5. They represent the relative error in percents. We can
observe, that while the regions of higher error are decreasing for the Newton method
without stabilization when refining the mesh, they remain almost independent of
refinement for the stabilized method.

Geometry of the channel is described in Figure 6. Streamlines in the channel
for Reynolds number 1,000 are presented in Figure 7, and in Figure 8, there are
a posteriori error estimates to compare the differences.

Fig. 1: Streamlines, Re = 10,000, mesh 32×32 without stabilization (left) and by semiGLS
(right).

33



Fig. 2: Streamlines by semiGLS, Re = 10,000, mesh 64×64 (left) and 128×128 (right).
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Fig. 3: A posteriori errors on elements, Re = 10,000, mesh 32×32 without stabilization
(left) and by semiGLS (right).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
5
4
3
2
1
0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
5
4
3
2
1
0

Fig. 4: A posteriori errors on elements, Re = 10,000, mesh 64×64 without stabilization
(left) and by semiGLS (right).
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Fig. 5: A posteriori errors on elements, Re = 10,000, mesh 128×128 without stabilization
(left) and by semiGLS (right).
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Fig. 6: Geometry of the channel (dimensions in milimeters).

Fig. 7: Streamlines in the channel by the Newton method without stabilization (left) and
by the semiGLS algorithm (right), Re = 1,000.

7. Conclusion

We have developed a stabilized method and tested it on various problems, where it
provided promising results. This means, that we were able to reach markably higher
Reynolds numbers using this method than using method without stabilization.

The cost for using stabilization is a loss of accuracy. This loss is hard to predict,
but we are able to quantify it and estimate it a posteriori. We have presented two
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Fig. 8: A posteriori error estimates in the channel by the Newton method without stabi-
lization (left) and by the semiGLS algorithm (right), Re = 1,000.

approaches for such evaluation, based on comparing approximate solutions with and
wihout stabilization and on a posteriori error estimation.

As the main ideas resulting from the research we could mention, that for reaching
higher Reynolds numbers, stabilization should be efficiently combined with mesh
refinement, because both of these factors improve the stability of the method. We
have shown, that residual stabilization is not as innocent in practice as available
proofs of convergence claim, and people, who use stabilized methods, should be
aware of this fact and always take care of the final accuracy of their computations.
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36



ON A TRAFFIC PROBLEM∗

Lubor Buřič, Vladimı́r Janovský

Abstract

We consider a macroscopic follow-the-leader model of a road traffic. The novelty
is that we incorporate the possibility to overtake a slower car. We introduce two
ways to simulate overtaking. One is based on swapping initial conditions after the
overtaking occurs. Second approach is to formulate the problem as a Filippov system
with discontinuous right-hand sides.

1. Introduction

A massive traffic is the phenomenon of our civilization. The mathematical mo-
deling of traffic flows has a long tradition, see e.g. [1] for a recent review. We will
consider a class of macroscopic follow-the-leader models, see e.g. [2]: Consider the
system

dxi

dt
= yi ,

dyi

dt
= V (xi+1 − xi)− yi , xN+1 = x1 + L, (1)

i = 1, . . . , N . It models N cars on a circular road of the length L. The pairs
(xi, yi) are interpreted as the position xi ≡ mod(xi, L) and the velocity yi of the car
number i. The acceleration dyi/dt of each car depends on the difference between the
car velocity yi and the optimal velocity function V = V (xi+1− xi). In particular, we
will consider the hyperbolic optimal velocity function r 7→ V (r) defined as

V (r) = V max tanh (a(r − 1)) + tanh(a)

1 + tanh(a)
, (2)

where V max and a are positive constants. The choice of V imposes a driving law and
we assume that this law is the same for all N drivers. The difference

hi ≡ xi+1 − xi , i = 1, . . . , N , (3)

is called headway (of the i-th car). Note that we can also formulate the model (1) in
the state space of headway and velocity components

dhi

dt
= yi+1 − yi ,

dyi

dt
= V (hi)− yi , i = 1, . . . , N. (4)

∗The research of the first author was supported by the grant MSM 6046137306 of the Ministry
of Education, Youth and Sports, Czech Republic. The second author was supported by the Grant
Agency of the Czech Republic (grant No. 201/06/0356) and also by the research project MSM
0021620839 of The Ministry of Education, Youth and Sports, Czech Republic.
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Fig. 1: Velocity vs. time, headway vs. time: negative headway is non physical.

Given an initial condition [x0, y0] ∈ RN × RN , the system (1) defines a flow on
RN × RN

[x0, y0] 7→ [x(t), y(t)] ≡ Ψ(t, [x0, y0]) , t ∈ R . (5)

Without loss of generality, we may order x0 as

s ≤ x0
1 ≤ x0

2 ≤ · · · ≤ x0
N−1 ≤ x0

N ≤ L + s ,

where s ∈ R is an arbitrary phase shift. It is easy to check that there exists a family
of quasi-stationary solutions, see e.g. [2]. For example, in case N = 3 let x0 =
[s; s + L/3; s + 2L/3], y0 = [c; c; c], c ≡ V (L/3) where s ∈ R is an arbitrary phase
shift. Then the flow (5) is given by x(t) = [s + ct; s + L/3 + ct; s + 2L/3 + ct],
y(t) = [c; c; c] for all t. Therefore, velocity and headway components are constant.

These solutions were observed both stable and unstable. The stability exchange
is due to the Hopf bifurcation, see [3]: In certain parameter regions, quasi-stationary
solutions co-exist with periodic solutions to (1).

Fig. 1 shows the periodic solution for N = 3 cars and the parameter setting
L = 4.56281, V max = 7, a = 2. The periodicity concerns the velocity and head-
way components. In [4], the authors noted that the solutions to (1) which yield
the negative headway are problematic to interprete physically. They called them
non physical solutions. For example, the trajectory on Fig. 1 becomes non physical
since tE = 0.2074. Observe that

h2(tE) ≡ x2(tE)− x3(tE) = 0 , y2(tE) > y3(tE) . (6)

The natural interpretation is that the car No 2 is about to overtake the car No 3.

The authors of [4] tried to generalize the model (1) in such a way that the periodic
solutions become physical for a larger parameter regions. We will follow a different
idea. We are going to simulate the overtaking. The resulting model is a piecewise
smooth dynamical system composed by pieces of (1).
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2. Overtaking

The idea is as follows: On the left Fig. 2, three consecutive trajectories due to the
flow (5) are sketched. The headway of the k-th car, namely hk(t) = xk+1(t)− xk(t),
becomes negative for t > tE. Note that we can compute the time tE for which
hk(tE) = 0 within a prescribed precision in MATLAB environment (see odeset,
Event location). We define a new initial condition at t = tE by naturally swapping
[xk(tE), yk(tE)] and [xk+1(tE), yk+1(tE)]. The resulting trajectories, see Fig. 2 on the
right, have discontinuous first derivatives (the solid and dashed lines). Note that
xk on the right Fig. 2 corresponds to position of the k-th car only for t ≤ tE. For
t > tE, xk is position of the (k + 1)-st car. Overtaking algorithm solves the problem
in two runs, simulation with swapping of initial conditions and postprocessing to
produce final trajectories of cars. In the postprocessing stage, we assemble pieces of
the final trajectories on Fig. 3 from lines obtained on Fig. 2. They have continuous
derivatives and discontinuous headway components. The velocities are continuous.

Let us illustrate performance of the algorithm. We consider N = 14, V max = 34
and a = 2; the same data as in [3], Figure 9. The steady state at L = 15 is known
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Fig. 2: On the left: A sketch of three trajectories of the flow (5). On the right: The
trajectories after imposing the swap of the initial condition at t = tE.
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Fig. 5: Velocity and headway of the 8-th car vs time. No 8 overtakes No 9 and No
12. Dashed: The model without overtaking, i.e. y8(t). Since t = 1.9136, dashed solution
becomes non physical.

to be unstable. Perturbing this steady state slightly, we let the above algorithm
work till the time t = 3. There were indicated 18 swaps on the track. Five of them
are shown on Fig. 4. As an example, we describe the trajectory of the 8-th car for
0 ≤ t ≤ 3, see Fig. 5, giving a comparison with the “smooth” model (1).
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3. Long time behaviour

Given an initial condition [x0, y0] ∈ RN × RN and a time instant t ≥ 0, let the
above algorithm return the actual positions and velocities [x(t), y(t)] ∈ RN × RN of
all N cars on the track. We formally define

[x0, y0] 7→ [x(t), y(t)] ≡ Π(t, [x0, y0]) , t ≥ 0 . (7)

The aim is to investigate asymptotic properties of the overtaking model as t →∞.
We report on invariant objects we observed. For instance, in the case N = 3,
one can observe phase-shifted reflectionally symmetric oscillations similar to those
predicted for a ring of coupled oscillators, see [5], Chapter XVIII, § 4: Let N = 3,
V max = 7, a = 2 and L = 3.6998. Let us set x0 = [0.1504; 2.6756; 3.5599], y0 =
[4.2668; 5.1647; 2.9087]. Due to (7), the velocity y(t) is periodic, see Fig. 6. Its period
T can be computed numerically. The cars No 1 and No 2 oscillate out-of-phase with
the period T = 4.8525. The 3-rd car oscillates twice as rapidly as the other two.
The corresponding headway components h(t) oscillate similarly, see Fig. 7. Consider
N = 3 for simplicity. We will show that Overtaking Model, in the state space of
headway and velocity components, can be formulated as a Filippov system, see [6].

4. Formulation via a Filippov system

Let us consider N = 3. In this case we have only two possible configurations of the
cars on the road, see Fig. 8. In the first configuration, cars are running ordered “123”
along the circuit in the anticlockwise direction, whereas in the second configuration,
the cars are ordered “132”. It should be noted that the car numbering is fixed during
the computation. The configuration of the cars changes when any car overtakes the
other one.

Let us define new variables

hij = xj − xi , i 6= j , (8)

which describe a gap between the car No i and the car No j. It is clear that hji can
be computed from the relation

hji = L− hij , i 6= j , (9)

which reflects the fact that we consider a closed road. Therefore we can use h12, h23

and h31 as state variables, only. Remaining gaps h13, h21 and h32 can be computed
from the equation (9).

We will redefine the optimal velocity function as follows. We use the function (2)
on the interval [0, L] only, and repeat function values with period L, see Fig. 9 for
example. Driving law is independent on whether the car ahead is lap down or lap
forward. We denote this new periodic discontinuous optimal velocity function as Ṽ .
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Fig. 6: The velocity waveforms of period
T = 4.8363.
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Fig. 8: Two possible configurations of the cars on the road.
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Fig. 9: Discontinuous optimal velocity function Ṽ ; V max = 7, a = 2, L = 2.5.

If the system is in the configuration “123” it is described by the following system
of differential equations

dh12

dt
= y2 − y1 ,

dy1

dt
= Ṽ (h12)− y1 ,

dh23

dt
= y3 − y2 ,

dy2

dt
= Ṽ (h23)− y2 , (10)

dh31

dt
= y1 − y3 ,

dy3

dt
= Ṽ (h31)− y3 .

After overtaking occurs, the configuration of the cars changes to “132” and then the
system (10) changes to the following one

dh12

dt
= y2 − y1 ,

dy1

dt
= Ṽ (h13)− y1 = Ṽ (L− h31)− y1 ,

dh23

dt
= y3 − y2 ,

dy2

dt
= Ṽ (h21)− y2 = Ṽ (L− h12)− y1 , (11)

dh31

dt
= y1 − y3 ,

dy3

dt
= Ṽ (h32)− y3 = Ṽ (L− h23)− y1 .

Finally, if
hij = kL , k ∈ Z , (12)

for some i, j then the i-th car and the j-th car are involved in overtaking. More pre-
cisely, if hij increases when it crosses the boundary (12), then the i-th is overtaken
by the j-th one. On the other hand, if hij decreases when it crosses the bound-
ary (12), then the i-th car overtakes the j-th one. During the computation, we swap
systems (10) and (11) after each overtaking. Since the function Ṽ is discontinuous
and right hand sides of systems (10) and (11) are different, the system given by
equations (10), (11) and (12) is a Filippov system, see [6].
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Fig. 10: The velocity components of the
solution of Filippov system (10),(11),(12).

Fig. 11: The gap components of the solu-
tion of Filippov system (10),(11),(12).

5. Comparison and comments

In this section, we provide a numerical solution of the discontinuous model. The
problem was solved in MATLAB by ode15s procedure with the event location to
detect overtaking. Special attention is paid to the comparison of the results given by
the overtaking algorithm described in the section 2 and 3 and results obtained from
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the discontinuous model. We have fixed values of parameters V max = 7 and a = 2.
Experiments were started from the “123” configuration.

The numerical solution was obtained for the length of the track L = 3.6998, with
the initial condition

[h12(0), h23(0), h31(0)] = [1.1396, 0.3138, 2.2464] , (13a)

[y1(0), y2(0), y3(0)] = [5.6485, 2.2919, 4.0906] . (13b)

Results are plotted on the Fig. 10 and 11. On each figure, the overtaking events are
marked by the full square.

The velocity components of the solution of both models are similar, compare
Fig. 10 and Fig. 6. This shows that both approaches results in the same behaviour
of the cars on the track.

Headway components of the solutions are not similar. The model (4) is identical
to the “123” configuration of the discontinuous model, i.e. the system (10). Thus,
h12 = h1, h23 = h2 and h31 = h3 until no overtaking occurs in the system. After
overtaking, since h1 = h13, h12 is not equal to h1 (until next overtaking occurs),
etc. Therefore, the solution curves on Fig. 11 correspond to that ones on Fig. 7 only
partially. Since the function h12(t) is the only one crossing the boundary represented
by the equation (12), the cars No 1 and No 2 overtake each other alternatively and
the car No 3 is not involved in any overtaking.

Let us note that gaps hij(t) are continuous functions, but headway components
hi(t) are discontinuous, see Fig. 11 and 7. The velocities yi are continuous but they
do not have continuous derivatives, see Fig. 10 and 6.
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A FICTITIOUS DOMAIN APPROACH TO THE NUMERICAL
SOLUTION OF ELLIPTIC BOUNDARY VALUE PROBLEMS

DEFINED IN STOCHASTIC DOMAINS∗

Claudio Canuto, Tomáš Kozubek

1. Introduction

In [2], we present an efficient method for the numerical solution of elliptic PDEs
in domains depending on random variables. The key feature is the combination of
a fictitious domain approach and a polynomial chaos expansion. The PDE is solved
in a larger, fixed domain (the fictitious domain), with the original boundary condi-
tion enforced via a Lagrange multiplier acting on a random manifold inside the new
domain. A (generalized) Wiener expansion is invoked to convert such a stochastic
problem into a deterministic one, depending on an extra set of real variables (the
stochastic variables). Discretization is accomplished by standard mixed finite ele-
ments in the physical variables and a Galerkin projection method with numerical
integration (which coincides with a collocation scheme) in the stochastic variables.
A stability and convergence analysis of the method, as well as numerical results, are
provided in [2]. The convergence is “spectral” in the polynomial chaos order, in any
subdomain which does not contain the random boundaries.

2. Setting of the problem

Let (Ω, F, P ) be a complete probability space, where Ω is the set of outcomes,
F is the σ-algebra of events and P is the probability measure. For any ω ∈ Ω, let
D(ω) ⊂ R2 be a bounded domain depending on ω; its boundary Γ (ω) := ∂D(ω) is
assumed to be polygonal or of class C1,1, i.e., the boundary is locally represented
by functions, whose first derivatives are Lipschitz continuous. We suppose that all
domains are contained with their boundaries in a domain D̂ ⊂ R2, which will serve
as the fictitious domain in the fictitious domain formulation (see Figure 1).

For the sake of simplicity, we will be concerned with the following model boundary
value problem in D(ω): Find u : D(ω)× Ω → R such that almost surely (a.s.) in Ω
we have { −4u( · , ω) = f in D(ω),

u( · , ω) = 0 on Γ (ω),

(P(ω)
)

∗This research was supported by the European project Breaking Complexity, n. HPRN-CT-
2002-00286 and by the grants IAA1075402 and 1ET400300415 of the Grant Agency of the Czech
Academy of Sciences.
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where f is a given function in L2(D̂). The case of Neumann or mixed boundary
conditions or of random coefficients and data (independent of the random variables
describing the domain) could be handled at no extra difficulty.

Solving the discrete problem
(P(ω)

)
for any ω ∈ Ω using, e.g., the finite element

method, means that by varying ω we have to: (i) remesh the new domain D(ω);
(ii) assemble the new stiffness matrix and the right hand side vector; (iii) solve the
new system of linear equations. Thus the efficiency of solving the discrete problems is
crucial. Hereafter, we will explore a fictitious domain method with nonfitted meshes
as a possible way to increase efficiency: indeed, this approach avoids completely
step (i) and partially step (ii), since the stiffness matrix remains the same for any
admissible domain.

3. The fictitious domain (FD) formulation

In this section, we will consider problem
(P(ω∗)

)
for a given event ω∗ ∈ Ω; we

will simplify our notation by setting D := D(ω∗), Γ := Γ (ω∗) and u = u( · , ω∗).
Let D̂ be the fictitious domain containing D. The corresponding fictitious domain

formulation reads as follows:



Find (û, λ) ∈ V ×M such that
∫

D̂
∇û · ∇v dx + 〈λ, τv〉Γ =

∫
D̂

fv dx, ∀v ∈ V,

〈µ, τ û〉Γ = 0, ∀µ ∈ M,

(P̂)

where the symbol 〈., .〉 denotes the duality pairing between M := H−1/2(Γ ) and
H1/2(Γ ), τ : H1

0 (D̂) → H1/2(Γ ) stands for the trace mapping and V is a closed sub-
space of H1(D̂). Typical choices for V are: H1(D̂), H1

0 (D̂), or H1
P (D̂) = {v | v ∈

H1(D̂), v is periodic on ∂D̂} if D̂ is a cartesian product of intervals.
The reason for introducing the space of the Lagrange multipliers M is to fulfil

the requirement that û|D solves
(P(ω∗)

)
.

The well-posedness of this problem for any f ∈ L2(D̂) follows from classical
results on abstract saddle-point problems (see [1]). Hence the saddle-point prob-
lem

(P̂)
has a unique solution (û, λ) ∈ V ×M . In addition, û|D = u and λ =

[
∂u
∂n

]
,

the jump of the normal derivative of u across Γ.

3.1. Discretization of the FD formulation

Problem
(P̂)

will be approximated by using the mixed finite element method
(see [1]). For this purpose the spaces V and M are replaced by suitable finite dimen-
sional subspaces Vh and MH . More specifically, Vh contains all continuous piecewise
bilinear functions v̂h constructed over a uniform rectangulation of D̂ and satisfying
boundary condition on ∂D̂ dependent on the choice of V . Further, MH contains all
piecewise constant functions µH constructed over a partition of ∂D. For more details
we refer to [3].

The resulting algebraic formulation is
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(
A BT

B O

) (
u
λ

)
=

(
f
0

)
,

(
P

)

where A is the stiffness matrix, B is the matrix coupling the primal variable u and the
Lagrange multiplier λ, which are the vectors of the nodal values of ûh (approximation
of û from Vh) and of the constant values of λH (approximation of λ from MH),
respectively, and f is the load vector.

To solve
(
P

)
, we use the first equation to eliminate the vector u = A−1(−BT λ+f)

from the second one, and we solve the resulting system for λ, BA−1BT λ = BA−1f ,
by a conjugate gradient method. The size of BA−1BT is much smaller than the size
of A. Generally, we do not need any preconditioning but we are able to construct
preconditioners to the Schur complement based on the pseudoinverse and multigrid
techniques. The multiplication by A−1 can be realized efficiently, e.g., by Choleski
factorization with symmetric approximate minimum degree reordering, multigrid
approach, domain decomposition method or by using fast solvers based on the Fourier
Analysis and the cyclic reduction.

4. The stochastic FD formulation

We go back to the stochastic setting. The FD formulation
(P̂)

suggests the

following stochastic FD formulation: Find û( · , ω) ∈ H1
0 (D̂) and λ( · , ω) ∈ M(ω) :=

H−1/2(Γ (ω)) such that, a.s. in Ω,{ ∫
D̂∇û( · , ω) · ∇v dx + 〈λ( · , ω), τv〉Γ (ω) =

∫
D̂ fv dx, ∀v ∈ H1

0 (D̂),

〈µ, τ û( · , ω)〉Γ (ω) = 0, ∀µ ∈ M(ω).

(P̂(ω)
)

We assume that, a.s., Γ (ω) is obtained from a reference C1,1 or polygonal bound-
ary Γ0 as the image of a piecewise smooth invertible mapping γ0(ω). More precisely,
we assume that Γ (ω) = γ0(ω)(Γ0), where γ0(ω) belongs to C1,p(Γ0) (the space of all
continuous and piecewise continuously differentiable mappings γ : Γ0 → R2) and its
inverse γ0(ω)−1 exists and belongs to C1,p(Γ (ω)). The function γ0 : Ω → C1,p(Γ0) is
assumed to be a random variable belonging to L∞(Ω, dP ; C1,p(Γ0)), i.e., γ0 is a jointly
measurable function on the Borel sets of Γ0 × Ω for which there exists a constant
g0 > 0 such that ‖γ0(ω)‖C1,p(Γ0) ≤ g0 a.s. in Ω; the same occurs for the inverse
mapping, i.e., ‖γ0(ω)−1‖C1,p(Γ (ω)) ≤ g0 a.s. in Ω.

Let E [X] =
∫

Ω
X(ω) dP (ω) be the expected value of a real-valued random vari-

able X. Let L2(Ω, dP ) = {X : Ω → R |X is a random variable such that E [X2] <
+∞} be the space of second order random variables over the probability space
(Ω, F, P ). We denote by L2(Ω, dP ; H1

0 (D̂)) the space of the random variables
v : Ω → H1

0 (D̂) (i.e., v : D̂ × Ω → R is jointly measurable and v( · , ω) ∈ H1
0 (D̂)

a.s. in Ω) with finite second order moment E
[
‖v‖2

H1
0 (D̂)

]
=

∫
D̂
E [|∇v|2] dx <

+∞. The definition of the space L2(Ω, dP ; H−1/2(Γ0)) is similar. Finally, the space
L2(Ω, dP ; H−1/2(Γ )) is defined as follows: µ ∈ L2(Ω, dP ; H−1/2(Γ )) means that
µ0 ∈ L2(Ω, dP ; H−1/2(Γ0)), where µ0(ω) ∈ H−1/2(Γ0) is defined a.s. in Ω by the
conditions 〈µ0, v0〉Γ0 = 〈µ, v0 ◦ γ−1

0 〉Γ (ω) for all v0 ∈ H1/2(Γ0).
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With such notation at hand, the stochastic FD formulation given at the beginning
of the section can be made precise as follows: Find û ∈ L2(Ω, dP ; H1

0 (D̂)) and
λ ∈ L2(Ω, dP ; H−1/2(Γ )) such that{

E
[∫

D̂∇û · ∇v dx
]
+ E [〈λ, τv〉Γ ] = E

[∫
D̂ fv dx

]
, ∀v ∈ L2(Ω, dP ; H1

0 (D̂)),

E [〈µ, τ û〉Γ ] = 0, ∀µ ∈ L2(Ω, dP ;H−1/2(Γ )).

(P̂S
)

Our next step will be to transform this stochastic problem into a purely deter-
ministic one. This will be accomplished by expanding the random variables into
polynomial chaos.

5. (Wiener) polynomial chaos

This section is devoted to recalling some basic facts about polynomial chaos (see,
e.g., [4]), as well as to setting the notation.

Let Y1(ω), . . . , Yk(ω), . . . be a sequence of independent standard Gaussian random
variables with zero mean and unit variance, i.e., E [Yk] = 0, E [YkY`] = δk` for all
k, ` ≥ 1. On the other hand, given a real variable y, let {Hn(y)}n≥0 be the sequence
of Hermite polynomials on the real line, satisfying

1√
2π

∫

R
Hn(y)Hm(y) e−y2/2dy = δnm, n, m ≥ 0,

where δnm is the Kronecker symbol. Next, denote by y = (yk)k≥1 ∈ RN0 any infinite
sequence of real variables, and by ν = (νk)k≥1 ∈ NN0 any infinite sequence of integers
which is “finite”, i.e., such that νk > 0 only for a finite number of indices; let
|ν| =

∑
k≥1 νk. Define the multidimensional Hermite polynomials of order |ν| as

Hν(y) =
∏∞

k=1 Hνk
(yk); note that the definition is meaningful since H0(y) ≡ 1,

hence, Hν(y) actually depends only on a finite number of components of y. These
polynomials are mutually orthonormal, in the following sense:

(Hν , Hµ) :=
∞∏

k=1

1√
2π

∫

R
Hνk

(yk)Hµk
(yk) e−y2

k/2dyk = δνµ, ∀ν, µ.

Setting Y(ω) := (Yk(ω))k≥1 for all ω ∈ Ω, the random variables Hν : ω 7→
Hν(Y(ω)) are independent and with unit variance, since E [HνHµ] = (Hν , Hµ) =
δνµ, ∀ν,µ. They form the so-called Wiener chaos (sometimes termed homogeneous
chaos or Hermite chaos). The Cameron-Martin theorem states that the family {Hν}
so defined forms an orthonormal basis of the space L2(Ω, dP ) of the second order
random variables over a Gaussian space. The precise result is as follows.

Theorem 5.1 Let Φ ∈ L2(Ω, dP ) and let Φν = E [ΦHν ] for any finite ν. Then,
Φ =

∑
ν finite ΦνHν in L2(Ω, dP ).

This means, for instance, that we have E
[(

Φ−∑
|ν|≤N ΦνHν

)2
]
→ 0 as N →∞.
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The Cameron-Martin theorem states that Φ(ω) = ϕ(Y(ω)), where ϕ : RN0 → R
is formally defined as ϕ(y) =

∑
ν finite ΦνHν(y). In many situations of interest, Φ

will be possible to express using a finite number of random variables Yk(ω), say using
YK(ω) := (Y1(ω), . . . , YK(ω)); then, Φ(ω) = ϕ(YK(ω)) with ϕ : RK → R defined as
ϕ(y) =

∑
ν∈NK ΦνHν(y) for y ∈ RK and satisfying

1

(
√

2π)K

∫

RK

ϕ2(y) e−yT y/2dy < +∞.

Thus, for our variable Φ, the condition Φ ∈ L2(Ω, dP ) is equivalent to ϕ ∈ L2
%(RK),

where the weight function % is defined as %(y) = 1
(
√

2π)K e−yT y/2. The variable y

will be termed the stochastic variable, whereas the spatial variables x and s will be
referred to as the deterministic variables.

So far, we have focussed on Gaussian random variables. Similar representations
can be given for second order random variables over other probabilistic spaces ad-
mitting a density function. The system of orthonormal polynomials which gives rise
to a generalized polynomial chaos, similar to the Wiener chaos, is determined by the
density function; for instance, the uniform density obviously leads to the Legendre
polynomials. We refer to [4] for more details.

In general terms, a second order random variable Φ depending on a finite num-
ber K of mutually independent real random variables Y1(ω), . . . , YK(ω) with zero
mean and unit variance with respect to a density function ρ, can be represented as

Φ(ω) = ϕ(YK(ω)), YK(ω) := (Y1(ω), . . . , YK(ω)), (1)

where ϕ = ϕ(y) satisfies ϕ ∈ L2
%(I): here, I = IK , where I is the interval of the

real line on which ρ is defined, and %(y) =
∏K

k=1 ρ(yk). Since L2
%(I) =

⊗K
k=1 L2

ρ(I),
a natural orthonormal basis {ψν}ν∈NK in this space is provided by the tensor product
of a one-dimensional family of orthonormal functions {ψn}n∈N in L2

ρ(I); we assume
that these functions are algebraic polynomials, as it occurs in the most relevant
situations.

6. The deterministic formulation of
(P̂S

)

We go back to the stochastic formulation
(P̂S

)
. We assume that the boundary

Γ (ω) of D(ω) depends on ω via K mutually independent real random variables
Y1(ω), . . . , YK(ω) with zero mean and unit variance with respect to a density function
ρ defined on some interval I ⊆ R. Let YK(ω) and % be defined as above. Since we
assumed in Section 4 that Γ (ω) = γ0(ω)(Γ0), equation (1) easily yields γ0(ω) =
γ∗0(YK(ω)), where γ∗0 = γ∗0(y) is a family of C1,p(Γ0)-mappings defined in I = IK ,
with inverses γ∗0(y)−1 in C1,p(Γ ∗(y)). Thus, Γ ∗(y) = γ∗0(y)(Γ0) is a parametrization
of the set of the admissible boundaries of the stochastic domains D(ω).

Since û and λ depend on ω only through Γ (ω), the Doob-Dynkin lemma assures
that this dependence takes place via YK(ω), i.e., we have û( · , ω) = û∗( · ,YK(ω))
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and λ( · , ω) = λ∗( · ,YK(ω)), where û∗( · ,y) ∈ H1
0 (D̂) and λ∗( · ,y) ∈ H−1/2(Γ ∗(y)),

a.e. in I. Condition û ∈ L2(Ω, dP ; H1
0 (D̂)) is then equivalent to û∗ ∈ L2

%(I; H
1
0 (D̂));

similarly, λ ∈ L2(Ω, dP ; H−1/2(Γ )) is equivalent to λ∗ ∈ L2
%(I; H

−1/2(Γ ∗)) (with
obvious meaning of the notation).

We now recall the formula E [Φ] =
∫
I
ϕ(y)%(y) dy which holds for all random

variables Φ(ω) = ϕ(YK(ω)) with ϕ ∈ L1
%(I). By applying this formula several times,

we transform the stochastic problem
(P̂S

)
into the following deterministic problem:

Find û∗ ∈ L2
%(I; H

1
0 (D̂)) and λ∗ ∈ L2

%(I; H
−1/2(Γ ∗)) such that





∫
I

∫
D̂∇û∗ · ∇v∗ dx %(y) dy+

∫
I〈λ∗, τv∗〉Γ ∗(y)%(y) dy =

∫
I

∫
D̂ fv∗ dx %(y) dy,

∀v∗ ∈ L2
%(I;H

1
0 (D̂)),

∫
I〈µ∗, τ û∗〉Γ ∗(y)%(y) dy = 0, ∀µ∗ ∈ L2

%(I; H
−1/2(Γ ∗)).

(P̂D
)

7. Discretization of the deterministic formulation

Discretization is accomplished by standard mixed finite elements in the physical
variables as in Section 3 and a Galerkin projection method with numerical integration
(which coincides with a collocation scheme) in the stochastic variables. Thus instead
of solving very large algebraic saddle-point system resulting from the discretization
of

(P̂D
)
, we will solve n deterministic problems

(P̂)
for n different configurations of

the stochastic domain D(y), where n is the number of Gauss (collocation) points yq.
We can simply parallelize all computations. For more details see [2], where a stability
and convergence analysis of the method have been presented. We showed that, in
any subdomain that does not contain the random boundaries, the convergence is
“spectral” in the polynomial chaos order.

8. Numerical examples

In this section, we illustrate the efficiency of our approach on a model example
with nonhomogeneous Dirichlet boundary condition for which we do not know an
analytic solution. Therefore basic Monte Carlo (MC) simulation without using any
special optimization technique is used to validate the result.

Example 1. Let D̂ := (0, 1) × (0, 1) be the fictitious domain. Let y = (y1, y2) be
a stochastic vector variable, associated with two independent normal distributions
Yk ∼ N [y, σ], k = 1, 2, with y = (a + b)/2, σ = (b− a)/8; the density function ρ(yk)
is truncated from R to the interval I = [a, b], a = 0.25 and b = 0.35. In a polar
coordinate system centered at x0 = (0.5, 0.5), consider the control points Ck, k =
0, . . . , 15, whose angles are ϕk = kπ/8 and whose radii are constant, rk = 0.3, except
for k = 5 and k = 6: for these control points, the radii are given by the variables y1

and y2, respectively (see Figure 1). The boundary Γ (y) is obtained by connecting
the control points via a piecewise Bèzier curve of the second order, identified by the
Bèzier triples (Mk, Ck+1,Mk+1), with Mk = (Ck + Ck+1)/2 for k = 0, . . . , 15 and
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C16 = C0, M16 = M0. All possible configurations of the stochastic domain D(y) are
obtained by moving the control nodes C5 and C6 along the depicted lines.

We consider the problem{ −4u(x,y) = 60 in D(y), u(x,y) = g on Γ (y),
(P(y)

)

where g(ϕ) = 0, ϕ ∈ [−π, 0] and g(ϕ) = 1− cos(2ϕ), ϕ ∈ (0, π).
Figures 2 and 3 provide comparisons between the results produced by basic Monte

Carlo (MC) simulation, for different numbers of trials N , and second order Polyno-
mial Chaos (PC) results, obtained by solving 9 independent deterministic problems.
The results are depicted along the line L = {(x1,

1
2
)| x1 ∈ [0, 1]}. The two vertical

dot and dash lines bound the domain D(y) which is fixed in this cross-section for all
y ∈ I2. While the Monte Carlo approximation of the mean value is good already for
moderate numbers of trials, an acceptable approximation of the variance is obtained
only with a number of trials in the order of several hundreds.

For more examples and deeper understanding we refer to [2].

Fig. 1: Geometry of
D(y).
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ON A SANDIA STRUCTURAL MECHANICS
CHALLENGE PROBLEM∗

Jan Chleboun

1. Introduction

A structural mechanics prediction problem was proposed by Ivo Babuška, Fabio
Nobile, and Raul Tempone as one of the uncertain input data problems specially
designed to challenge the participants of Validation Challenge Workshop, Sandia
National Laboratories, Albuquerque, NM, USA, May 21-23, 2006; see [1].

The prediction problem concerns the structure sketched in Figure 1 (left), the
coordinates of the joints are given in meters. The rods are joined by pins (zero
moment connections) at the junctions and hinges. The horizontal beam (number 4
in Figure 1 (left)) is loaded by a uniform force. The vertical displacement of P , the
midpoint of the horizontal beam, is denoted by δP and exaggerated. Since the force
acts downward, δP is negative; we refer to [1], where w(Pm) ≡ δP , for details.

The prediction problem is posed as follows: What is the probability that δP ≥
−3 mm? Or, in a broader sense: How can we assess the occurrence of the δP ≥
−3 mm phenomenon?

The difficulty of the problem lies in limited information about material parame-
ter E, the modulus of elasticity (Young modulus) of the truss structure members.
The material of the bars and the beam is represented by the Young modulus that
is assumed to be a homogeneous random field. The modulus and its probabilistic
properties are not known and have to be inferred and characterized from available
data. In [1], three embedded sets of data are presented. In this analysis, we confine
ourselves to the first, most limited dataset.

It comprises: a vector Ev
0 = (13.26, 10.86, 14.77, 10.94, 11.05) of five local values

of E in GPa, see the top five values in the third column of [1, Table 6]; a vector Ev
20 =

(11.65, 11.21, 11.45, 10.89, 11.67) of five averaged values of E (in GPa) inferred from
the elongation of sample rods 20 cm long (calibration experiments; cross-section area
A = 4 mm2, force F = 1200 N), see the top five values in the second
column of [1, Table 6] for the elongations; a vector Ev

80 = (11.94, 11.65) of two
averaged values of E (in GPa) inferred from the elongation of sample rods 80 cm

∗This research was supported by the Czech Science Foundation, grant 201/04/1503, and by the
Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503. The
author thanks Ivo Babuška, Fabio Nobile, and Raul Tempone for fruitful discussions about the
challenge problem, and Ivan Saxl for valuable comments on an earlier version of the manuscript.
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Fig. 1: Prediction problem (left). Accreditation experiment (right).

long (validation experiments; A = 4 mm2, F = 1200 N), see the top two values in
the second column of [1, Table 7]; and δQ, a particular displacement observed in
a “similar”, point-loaded structure in an accreditation experiment [1], see Figure 1
(right) and the first value of w(P ) (correctly w(Q)) in [1, Table 8]. Vectors Ev

0 , Ev
20,

and Ev
80 stem from sampling random variables E0, E20, and E80, respectively.

The geometry of the structures as well as of the individual bars and beams
is exactly known. The structures are statically determined, therefore the load-to-
displacement mapping can be expressed by an explicit formula, see [1] for details.

2. Analysis

The probability distribution of the Young modulus value is unknown. The num-
ber of measurements is not sufficient to allow for strong results of a statistical analy-
sis; the estimates of probability related parameters would be poor. Nevertheless,
a stochastic-based approach will be used to tackle the uncertainty problem.

Let us identify the longitudinal axis of each rod with a local coordinate system
axis in such a way that the left end of the rod coincides with the origin. Along each
rod, the Young modulus is supposed to be a stationary random field, E(x), where
x ∈ [0, L] and L is the length of the rod. Some features of this field are assumed to be
independent of x. For example, E(E(x)), the expected value of the Young modulus
at point x, is assumed to be constant and independent of x and of a particular choice
of the rod; similarly for higher statistical moments. This is why we can identify E(x)
with an x-independent random variable E0 in certain analyses.

We have to assume that E(x1) and E(x2) are not mutually independent, especially
if x1 is “close” to x2. In other words, E(x1) and E(x2) are correlated. However, the
formula representing the model of correlation is not known. We will assume a formula
dependent on one parameter, called correlation length, that has to be determined
from the available data.
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The method of treating the prediction problem can be summarized as follows:
• Choose respective intervals I0 and I20 that exceed the range of the measured val-
ues Ev

0 and Ev
20. These intervals represent the assumed range of random variables E0

and E20.
• Assume a probability distribution of E0 and E20 (uniform or normal).
• For 1/E, assume a covariance function with an unknown correlation length Lcorr.
• By using the assumptions, calculate the correlation length Lcorr.
• By knowing Lcorr, infer I80, an interval representing the range of the random vari-
able E80, and check it against Ev

80. It is assumed that E80 retains the probability
distribution of E0 and E20 (uniform or normal).
• By knowing Lcorr, infer an interval representing the range of the random variable δQ

and check it against the value of δQ coming from the accreditation experiment.
• By knowing Lcorr, infer an interval representing the range of δP and check it against
the −3 mm limit given in the prediction problem. Try to make a conclusion.

Inevitably, expert opinion is required to make realistic assumptions needed in the
above-listed steps.

The intervals I0 and I20 are constructed to have a common center. They are
interpreted as either the respective intervals in which both E0 and E20 are uniformly
distributed (i.e., E0 and E20 do not exceed I0 and I20, respectively), or the intervals
covering 95% of normally distributed values E0 and E20 (i.e., the probability that
these random quantities leave their intervals is 0.05). The normal distribution as-
sumption can be challenged because normally distributed values of E would allow
for a negative Young moduli (with a low probability), which is physically impossible.

We have a double reason for using the normal distribution. First, we wish to
compare the results obtained for the uniform probability distribution with the re-
sults obtained for a non-uniform distribution. Second, we wish to minimize the use of
numerical methods, which is possible for the above-mentioned distributions. More-
over, the normal distribution assumption may still be adequate for understanding
the dominant behavior of the rods and structures.

Let us recall that E0 is a random field of local values of E, that is, a field identical
to E(x) except for the localization at a particular x.

We assume that the covariance function of 1/E is related to the variance of 1/E in
a particular way mediated through an Lcorr-dependent function (cf. [2, Example 1]):

cov
[
1/E(x1), 1/E(x2)

]
= var

(
1/E0

)
exp

(−|x1 − x2|/Lcorr

)
. (1)

If a bar of length L and cross-section area A is axially loaded by a force F , then
for δL, its elongation, holds

δL =
F

A

∫ L

0

1

E(x)
dx. (2)

Since E(x) is a random variable, δL is a random variable, too.
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By (2) used in var(δL) = E
[
δ2
L

]− (E[δL])2 and by (1), we infer

var(δL) =
F 2

A2

∫ L

0

∫ L

0

{
E

[
1/E(x1), 1/E(x2)

]− (
E

[
1/E0

])2
}

dx1 dx2

=
F 2

A2

∫ L

0

∫ L

0

cov
[
1/E(x1), 1/E(x2)

]
dx1 dx2

=
F 2

A2
var

(
1/E0

) ∫ L

0

∫ L

0

exp

(
−|x1 − x2|

Lcorr

)
dx1 dx2. (3)

If we define EL as the effective modulus of elasticity inferred from the prolongation
of the bar of length L via the equality δL = FL/(AEL), then EL is also a random
variable and its variance can be calculated as var(δL) = var(1/EL)F 2L2/A2. By this
equality combined with (3), we eliminate var(δL) and obtain

var(1/EL)

var(1/E0)
=

1

L2

∫ L

0

∫ L

0

exp

(
−|x1 − x2|

Lcorr

)
dx1 dx2. (4)

To solve (4), we evaluate var(1/E0) stemming from the assumed probability dis-
tribution of E0 in the interval I0. We evaluate var(1/EL) for L = 20 cm in a similar
way by using assumptions about E20 and I20. After exact integration (done analyti-
cally by Maple), the right-hand side of (4) becomes

2z + 2z2(exp(−1/z)− 1), where z = Lcorr/L, (5)

an explicit function of Lcorr and L. By using (5) and by fixing L = 20 cm, we can
numerically solve (4) for Lcorr.

As soon as var(1/E0) is inferred from the assumptions and Lcorr is known from (4),
we can use (4) to directly calculate var(1/EL) for L = 80 cm and the other bar
lengths appearing in the truss structures. We assume that var(1/E80) corresponds
to either a uniform or normal distribution of E80. Under these assumptions, we can
infer I80 as either the entire range of a uniformly distributed random variable E80 or
the 95% confidence interval of normally distributed random variable E80, and check
whether or not the validation data lie in I80.

To obtain the vertical displacements δQ and δP , the axial elongation of the rods
has to be combined with the bending of the transversally loaded beams, see [1] for
details. The bending is expressed by the Green function technique. As a consequence,
to compute the corresponding variance of the vertical displacements δQ and δP ,
integrals such as

∫ L

0

∫ L

0

φ(x1)ψ(x2) exp
(
−|x1 − x2|

Lcorr

)
dx1 dx2 (6)

have to be evaluated. In the most complex setting of (6), φ and ψ are continuous
piece-wise quadratic (in the accreditation experiment) or cubic (in the prediction
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problem) functions. Again, Maple is able to analytically integrate expression (6). In
a similar (but simpler) way, the respective means of δQ and δP can be calculated

through the knowledge of
∫ L

0
φ(x1)ψ(x2) dx1 dx2 and E[1/E0].

Since we have made various assumptions, it will be useful to parametrize at least
some of them to make the model partially parameter-dependent. By playing with
the values of the parameters and by analyzing the model response, we hope to get
at least some insight into the impact of uncertain inputs on the prediction problem
truss behavior.

Let us define Em as the mean of all the measured values of the Young modulus,
that is Ev

0 , Ev
20, and Ev

80 taken together, twelve values in total. Let us introduce
three fundamental parameters: Ecoef, Eratio

0 , and I20-to-I0 ratio. The first parameter
stands for a multiplicative coefficient that is used to control the centers of intervals
I0, I20, and I80 that are defined as coincident with EcoefEm. The second parameter,
Eratio

0 , is related to the distance between Ev
0 (the measured values) and the ends of

the interval I0 that covers Ev
0 . In detail, if Ic is the complement of I0 in the set

of real numbers, then Eratio = dist(Ic, E
v
0 )/l0, where l0 is the difference between the

maximum and the minimum of the measured values Ev
0 . Finally, the I20-to-I0 ratio

is simply the ratio of the length of I20 to the length of I0.

Let us comment on Figure 2. The uppermost graph depicts the measured values
Ev

0 , Ev
20, and Ev

80 (marked by×) as well as the respective intervals I0, I20, and I80 they
are embedded in. Unlike I0 and I20, which are assumed, I80 is calculated from the
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Fig. 2: Model outputs for fixed parameters.
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assumptions and (4). Two intervals I80 should be depicted; one determined by the
uniform distribution assumption, the other determined by the normal distribution
assumption. Since, however, they almost coincide, only one line appears in the
graph. The means of the measured values are marked by short vertical lines. The
long vertical line marks the average value of the Young modulus we assume and
calculate with, i.e., EcoefEm. Note that Ev

20 comprises five values but two of them
almost coincide.

The middle graph shows the measured δQ marked by a small circle, and the esti-
mated intervals for δQ constructed from the mean of δQ and the standard deviation
of δQ inferred via the method outlined on the previous pages. The width of the lines
marks the intervals determined by the mean and the first three multiples of (plus
and minus) the standard deviation. Intervals stemming from the uniform (U, upper
line) and normal (N, lower line) distribution of E0 are drawn.

In Figure 2, the last graph is a parallel to the graph described in the previous
paragraph, this time for δP , however. We see that the mean of δP is greater than the
given acceptable limit of δP (−3 mm, marked by ◦). Indeed, it is more than three
standard deviation values “on the safe side” even in the case of uniformly distributed
Young modulus values.

Figure 3 shows what happens if we let the I20-to-I0 ratio change. In other words,
we fix the interval encompassing the measured local Young moduli and we let the
interval I20 get larger and larger. As a consequence, the inferred interval I80 becomes
larger too, and the possible ranges of δQ and δP also increase. In Figure 3, the two
thin lines depict Eratio

20 and Eratio
80 . These quantities have the meaning similar to that

of Eratio
0 , but are defined by means of the pairs I20, Ev

20, and I80, Ev
80. The larger the

ratio, the larger the distance between the measured values of the Young modulus and
the ends on the respective intervals I20 and I80. The two assumptions on the random
variable distribution lead to two graphs of Eratio

80 . Since they almost coincide, only
one line is depicted in Figure 3.

The “accreditation” dash and dash-dotted lines show the ratio of the distance
between the measured δQ value and the calculated average of δQ to the standard
deviation of δQ. Again, two assumed distributions of E are considered (u, uniform;
n, normal).

The two thick lines that graph negative values depict the ratio of the difference
between the limit displacement of −3 mm and the calculated average of δP to the
standard deviation of δP . The uniform distribution assumption leads to a worse
separation from the limit displacement than the normal distribution assumption.
We observe that if the I20-to-I0 ratio increases, the distance between the set limit
(−3 mm) and the calculated average decreases, that is, the probability that δP ≤
−3 mm increases.

The ∗ and ¤ symbols stem from the Chebyshev inequality [3, Section 33.10,
inequality (3)], that is, they mark an upper bound on the probability that δP ≤
−3 mm; the estimates are multiplied by 10 in Figure 3. The values depend on the
assumed distributions of E (u, uniform; n, normal).
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Fig. 3: Model outputs for variable parameters.

The graphs in Figure 2 and Figure 3 might indicate that the probability of reach-
ing or exceeding the limit displacement in the prediction problem is sufficiently low
even if we allow for rather large intervals to cover Ev

0 and Ev
20. However, the graphs

corresponding to perturbed values of Ecoef (not displayed here) reveal a substantial
sensitivity of outputs to the assumed average of the Young modulus. Its decrease
(Ecoef = 0.98, for instance) seems to be acceptable from the view of the measured
data, but brings the predicted average displacement closer to the limit (less than
three standard deviations). To make a more definite conclusion on the prediction
problem solution, more data from measurements would be needed.
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A SECOND ORDER UNCONDITIONALLY POSITIVE SPACE-TIME
RESIDUAL DISTRIBUTION METHOD FOR SOLVING

COMPRESSIBLE FLOWS ON MOVING MESHES∗

Jǐŕı Dobeš, Herman Deconinck

Abstract

A space-time formulation for unsteady inviscid compressible flow computations in
2D moving geometries is presented. The governing equations in Arbitrary Lagrangian-
Eulerian formulation (ALE) are discretized on two layers of space-time finite elements
connecting levels n, n + 1/2 and n + 1. The solution is approximated with linear
variation in space (P1 triangle) combined with linear variation in time. The space-time
residual from the lower layer of elements is distributed to the nodes at level n+1/2 with
a limited variant of a positive first order scheme, ensuring monotonicity and second
order of accuracy in smooth flow under a time-step restriction for the timestep of the
first layer. The space-time residual from the upper layer of the elements is distributed
to both levels n + 1/2 and n + 1, with a similar scheme, giving monotonicity without
any time-step restriction. The two-layer scheme allows a time marching procedure
thanks to initial value condition imposed on the first layer of elements. The scheme
is positive and second order accurate in space and time for arbitrary meshes and it
satisfies the Geometric Conservation Law condition (GCL) by construction.

Example calculations are shown for the Euler equations of inviscid gas dynamics,
including the 1D problem of gas compression under a moving piston and transonic
flow around an oscillating NACA0012 airfoil.

1. Introduction

Residual Distribution (RD) schemes have reached a certain level of maturity for
the simulation of steady flow problems. The RD approach allows to construct second
order methods on a compact stencil, which are positive at the same time. They are
used as state of the art methods to solve complex steady problems e.g. 3D turbulent
Navier-Stokes equations or Magneto-Hydro-Dynamic equations [5, 2, 1].

In [9] it has been noted that for an unsteady computation a mass matrix coupling
space and time discretizations has to be taken into the account, otherwise the spatial
accuracy is lost. This matrix is not a M-matrix, hence if inverted, the positivity of
the spatial discretization is compromised.

In [10, 1, 3] an alternative approach for unsteady problems has been proposed,
based on space-time RD schemes for a bilinear space-time element approximation.
In particular, in [10, 1] a first order scheme corresponding to the N scheme with
Crank-Nicholson time integration has been shown to be positive under a time step
restriction. This restriction can be overcome by adding one more time layer [3].

∗This research was partially supported by Research plan of MSMT no. 6840770003.
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An extension of the conditionally positive, one layer method for moving meshes
was presented in [6]. In this paper we extend the two layer method for computations
on moving meshes. Because the underlying scheme can be written as the modification
of the spatial N scheme with Crank-Nicholson time integration, we use the Arbitrary
Lagrangian-Eulerian formulation of the RD method [11].

2. ALE formulation

We define the ALE mapping which for each t ∈ I associates a point ~Y of reference
configuration Ω0 to a point ~x on the current domain configuration Ωt, At : Ω0 ⊂ Rd →
Ωt ⊂ Rd, ~x(~Y , t) = At(~Y ). The ALE mapping At is chosen sufficiently smooth and
invertible with nonzero determinant of Jacobian JAt . A domain velocity ~w(~x, t) is

defined as the time derivative of ~x for constant ~Y . We start from the conservative
ALE formulation of the Euler equations in d spatial dimensions

1

JAt

∂JAtu

∂t

∣∣∣∣
~Y

+∇x · [~f(u)− u~w] = 0 , (1)

where u = (ρ, ρvi, E)T is the vector of conserved variables and ~f(u) the well known
vector of flux functions. The system is closed with the equation for a perfect gas.
The problem is equipped with an appropriate set of initial and boundary conditions.
The following equality, called geometrical conservation law, will be used later

∇x · ~w =
1

JAt

∂JAt

∂t

∣∣∣∣
~Y

. (2)

The RD schemes operate on the quasi-linear form of the equation, which can be
obtained with ∇x · (u~w) = ~w · ∇xu + u∇x · ~w and identity (2)

1

JAt

∂JAtu

∂t

∣∣∣∣
~Y

+

(
∂~f

∂u
− I ~w

)
· ∇xu− u

JAt

∂JAt

∂t

∣∣∣∣
~Y

= 0. (3)

3. Numerical scheme

The problem is solved on mesh T h consisting of simplex elements {E}. The
unknowns are stored in the vertices of the mesh. A straightforward application of
the N scheme [6] with Crank-Nicholson time integrator operating between layers n
and n + 1/2 (i.e. lower layer of the elements) to the problem (3) gives

S
n+1/2
i u

n+1/2
i − Sn

i un
i

∆tlower
+

∑
E∈Di

1

2

[(
k+

i (ui − uin)
)n+1/2

+
(
k+

i (ui − uin)
)n

]E

−

−u
n+1/2
i + un

i

2

S
n+1/2
i − Sn

i

∆tlower
= 0, ki =

(
∂~f

∂u
− I ~w

)
·~ni

d
, uin = −(

∑
i∈E

k+
i )−1

∑
j∈E

k−j uj,

(4)
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where Si is the area of median dual cell around node i, Di denote all the elements
sharing node i, un

i is the solution in node i at time level n, ∆t is the time-step, ~ni

is the normal to the face opposite to the node i scaled by its surface and k+
i is the

positive part of the upwind matrix ki in the sense of its eigen-decomposition. Note
that the Jacobian includes the mesh velocity. The Jacobian and mesh velocity ~w are
taken in an averaged state, such that the resulting method is conservative [11, 4].
Note, that the method presented here is different from [11] in the treatment of the
source term, what allows us to show the positivity of the scheme for scalar problems
under the time-step restriction

∆tlower ≤ µ(En+1/2) + µ(En)

k+,E
i (d + 1)

, ∀i, E ∈ T h, (5)

where µ(E) is the volume of element E. This method can be interpreted as a space-
time method, distributing space-time nodal contribution φEST

i from the lower layer
of the elements (element between levels n and n + 1/2) to the nodes at level n + 1/2

u
n+1/2,m+1
i = u

n+1/2,m
i − αi

∑
E∈Di

φ
EST,lower,n+1/2
i , (6)

where αi is relaxation parameter given by the explicit stability constraint.
Although the method is implicit, it suffers from the time-step restriction (5). As

a cure, we add a second layer of elements with similar scheme, operating between
levels n+1/2 and n+1. This scheme distributes portions of the space-time residual
of the upper layer as follows:

• To the nodes at n + 1:

φEST,upper,n+1
i = µ(En+1

i )un+1
i − µ(E

n+1/2
i )u

n+1/2
i +

+∆tupper
∑
E∈Di

1

2

(
k+

i (ui − uin)
)n+1,E−un+1

i + u
n+1/2
i

2

(
µ(En+1

i )−µ(E
n+1/2
i )

)
.

(7)

• To the nodes at n + 1/2:

φ
EST,upper,n+1/2
i = ∆tupper

∑
E∈Di

1

2

(
k+

i (ui − uin)
)n+1/2,E

. (8)

Relaxation procedure (6) has then the form

u
n+1/2,m+1
i = u

n+1/2,m
i − αi

∑
E∈Di

(
φ

EST,lower,n+1/2
i + φ

EST,upper,n+1/2
i

)
(9)

un+1,m+1
i = un+1,m

i − αi

∑
E∈Di

φEST,upper,n+1
i (10)

and the scheme is formally unconditionally stable with arbitrary ∆tupper.

62



The space-time nodal contribution can be seen as a space-time residual distrib-
uted with (implicitly defined) distribution coefficient

φEST

i = βiφ
EST

,
∑
i∈E

βi = 1. (11)

The scheme described above is at most first order accurate. As it was proven in [1],
a condition for second order of accuracy is the uniform boundedness of the distrib-
ution coefficients βi. One of the possibilities to modify the distribution coefficients
is [1]

βmod
i =

β+
i∑

j∈E β+
j

. (12)

This modification preserves the sign of the distribution coefficients and ensures its
uniform boundedness, hence the method becomes second order accurate, while keep-
ing its positivity. In the case of the Euler equations the modification of the distribu-
tion coefficients is performed on simple waves given by the projection of the residual
to the Jacobian eigenvectors [1].

4. Numerical results

The first test case is motivated by an internal aerodynamics problem, namely
flow in a piston engine. A gas at rest is enclosed between two opposite walls in the
chamber. One of the walls slowly starts to move, compressing the gas inside the
chamber. This problem can be solved by the method of characteristics [12] until the
head of the pressure wave reflects from the end wall or a shock is created1. We have
used a rectangular domain of size 5× 1 with initial conditions u0 = 0, ρ0 = 1.4 and
p0 = 1. The piston starts to accelerate with derivative of acceleration

...
x = 0.2. The

numerical solution is plotted at time t = 4, when the piston has reached x = 2.133̄.
The mesh consist of 372 nodes and 674 triangular elements with 30 nodes along
the cylinder wall and 6 nodes along the end wall. Comparison is made with a finite
volume method using a linear least square reconstruction, Barth’s limiter, three point
backward differentiation scheme on moving meshes [7] (Fig. 1). The solution given
by the RD scheme perfectly follows the analytical solution, while the FV scheme
gives bigger differences.

The next problem involves a piston instantaneously accelerated to a uniform
speed. From the Rankine-Hugoniot jump conditions we can compute the solution
analytically.2 The comparison is shown in Fig. 2 at t = 2. Note the perfectly
monotone shock capturing. Both the FV and RD schemes give comparable results.
Note also the entropy layer in the vicinity of the piston, which is present both for
RD and FV methods. Its source has to be still investigated.

1The analytical solution is avaliable on an email request. Email: Jiri.Dobes@fs.cvut.cz.
2Piston velocity is 0.8, flow velocity is uL = 0.8, uR = 0, density is ρL = 2.8191, ρR = 1.4 and

pressure is pL = 2.78, pR = 1. Shock speed is 0.79461.
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Fig. 1: Smooth compression of the gas, Mach number cut. Left: present scheme. Right:
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Fig. 2: Compression of the gas with a shock. Pressure and entropy cut. Left half: present
scheme. Right half: FV scheme.

Finally, a fully 2D test involves a NACA 0012 airfoil which is sinusoidally pitching
around its a quarter chord (test case AGARD CT 5[8]). The free stream Mach
number is 0.755 and the mean angle of incidence is 0.016◦ . The airfoil performs
a sinusoidal pitching motion with an amplitude of 2.51◦

α = 2.51 sin(2kt) + 0.016, (13)

where k is the reduced frequency of oscillation with respect to the half chord

k =
ωc

2u∞
= 0.0814, (14)

where c is the chord, u∞ is the free-stream velocity and ω the frequency.
The problem was solved on an unstructured mesh consisting of 5711 nodes and

11153 elements with 206 nodes around the airfoil. The free stream boundary was
located 20 chords away from the airfoil. The solution at time t = 115 is plotted in
Fig. 3. The FV solution is plotted by a dotted line, while the RD solution is plotted
as the continuous lines. The FV solution is more dissipative, as one can notice above
the profile, where the RD isolines are more crisp and running straight into the shock.
Interesting is a comparison of the lift coefficient depending on the angle of incidence.
On the zoom, one can notice a higher peak of the lift given by the RD method than
by the FV method, which points to the higher accuracy.
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5. Conclusions

The two layer N-modified space-time multidimensional upwind residual distribu-
tion scheme of [1] was extended for computations on moving meshes. The scheme is
unconditionally positive and second order accurate on moving meshes. The method
was tested on a 1D piston problem (solved in 2D settings), where we have shown
excellent agreement with the analytical solution. The method was then applied to
the problem of a transonic flow around an oscillating NACA 0012 airfoil, showing
the more accurate and less dissipative behavior of RD scheme with respect to the
state of the art FV scheme.
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SCALABLE ALGORITHMS FOR CONTACT PROBLEMS WITH
GEOMETRICAL AND MATERIAL NON-LINEARITIES∗

Jǐŕı Dobiáš, Svatopluk Pták, Zdeněk Dostál, Vı́t Vondrák

1. Introduction

Contact modelling is still a challenging problem of non-linear computational me-
chanics. The complexity of such problems is related to the a priori unknown contact
interface and contact tractions. Their evaluations have to be part of the solution. In
addition, the solution across the contact interface is non-smooth.

FETI (Finite Element Tearing and Interconnecting) method [1] belongs to the
class of non-overlapping spatial domain decomposition method. Its key concept stems
from the idea that the spatial sub-domains, into which the domain is partitioned,
are ‘glued’ by Lagrange multipliers. After eliminating the primal variables, which
are displacements, the original problem is reduced to a small, relatively well condi-
tioned, typically equality constrained quadratic programming problem that is solved
iteratively. The CPU time that is necessary for both the elimination and iterations
can be reduced nearly proportionally to the number of the processors, so that the
algorithm exhibits parallel scalability. Observing that the equality constraints may
be used to define so called ‘natural coarse grid’, Farhat, Mandel and Roux modified
the basic FETI algorithm so that they were able to prove its numerical scalability,
i.e. asymptotically linear complexity.

If the FETI method is applied to the contact problems, the same methodology
can be used to prescribe conditions of non-penetration between bodies.

After brief theoretical introduction, this paper is concerned with demonstration
of scalability of a new variant of the FETI domain decomposition method, called
TFETI (Total FETI) method, and application of the classic FETI method to the
solution to contact problems with other non-linearities.

2. Theoretical background

Let us consider a contact problem between two solid deformable bodies. This is
basically the boundary value problem known from the solid mechanics. The problem
is depicted in Figure 1. Two bodies are denoted by (Ω1, Ω2) ⊂ Rn, n = 2 or n = 3
where n stands for number of spatial dimensions. Γ stands for boundaries of the
bodies that are sub-divided into three disjoint parts. The Dirichlet and Neumann
boundary conditions are prescribed on the parts Γu and Γf , respectively. The third

∗This work was supported by grant No. 101/05/0423 of the Grant Agency of the Czech Republic.
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type of the boundary condition, Γc, is defined along the contact interface. The math-
ematical description of the problem is given by the governing equations expressing
equilibrium conditions of the system, along with the boundary conditions.
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Fig. 1: Contact problem.

The result of application of the classic FETI method to the system of bodies
from Figure 1 is depicted in Figure 2. The sub-domain Ω1 is decomposed into two
sub-domains with fictitious interface between them.

The fundamental idea of the FETI method is that the compatibility between sub-
domains is ensured by means of the Lagrange multipliers or forces in this context.
In Figure 2, λE denotes the forces along the fictitious interface and λI stands for the
forces generated by contact.

The original FETI method assumes that Dirichlet boundary conditions are in-
herited from the original problem, which is shown in Figure 2. This fact implies that
the defect of the stiffness matrices of individual sub-domains may vary from zero,
for the sub-domains with enough Dirichlet conditions, to the maximum (6 for 3D
solid mechanics problems and 3 for 2D ones) in the case of sub-domains exhibiting
some rigid body modes. General solution to such systems requires computation of a
generalised inverse and a basis of the null spaces of the underlying singular matrices.
The problem is that the magnitudes of the defects are difficult to obtain because this
computation is disposed to the round off errors [2].

To circumvent the problem, Dostál came up with a novel solution [3]. His idea
was to release all prescribed Dirichlet boundary conditions and enforce them by the
Lagrange multipliers as it is shown in Figure 3. The effect of the procedure on
the stiffness matrices of the sub-domains is that their defects are the same and its
magnitude is known beforehand.

The mathematical description of the FETI method can be found, e.g., in [4] and
the TFETI method in [3].
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Application of the FETI and TFETI methods to the contact problems converts
the original problem to the quadratic programming one with simple bounds and
equality constraints. This problem is further transformed by Semi-Monotonic Aug-
mented Lagrangians with Bound and Equality constraints (SMALBE) method to
the sequence of simply bounded quadratic programming problems. These auxiliary
problems may be solved efficiently by the Modified Proportioning with Reduced Gra-
dient Projection (MPRGP) method which is described in more details in [5]. It was
proved in [6] that application of combination of both these methods to solution to
contact problems benefit the numerical and parallel scalability.

We extended the FETI and TFETI method to problems with the geometric and
material non-linearities. The above mentioned approach is directly applicable to
solution to the contact problems, but with other conditions linear, i.e. for linear
elasticity with small displacements and rotations, and frictionless contact. Any ad-
ditional non-linearity necessitates employment of the nested iteration strategy, where
the outer loop is concerned with the material and geometric non-linear effects, con-
tact geometry update, and equilibrium iterations.

3. Numerical experiments

We shall show results of three sets of numerical experiments we carried out. The
first one documents numerical scalability of the FETI and TFETI methods. The
second case is concerned with contact problem of two cylinders, and the third one
with contact problem of the pin in hole with small clearance.

Numerical experiments in the second and third cases were carried out with our
general purpose finite element package PMD [7].
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3.1. Poisson’s problem

Consider a Poisson’s problem 4u = 1 in Ω, where Ω = (0, 1)× (0, 1). Dirich-
let boundary conditions are prescribed along one edge of the domain, and Neumann
conditions along remaining edges. This scalar boundary value problem can be inter-
preted as the deformation perpendicular to the domain for a thin membrane under
lateral pressure, while the physical meaning of the right hand side is the applied pres-
sure divided by membrane tension per unit length. We used bilinear quadrilateral
elements for discretisation of the problem.

We carried out a series of computations with changing decomposition parame-
ter H and discretisation parameter h. The results are summarised in Table 1.

H h prim. dual FETI dual TFETI CG steps CG steps
FETI TFETI

1/2 1/4 36 11 17 7 4
1/4 1/8 144 63 75 12 5
1/8 1/16 576 287 311 13 7
1/16 1/32 2304 1215 1263 15 11
1/2 1/8 100 19 29 9 9
1/4 1/16 400 111 131 16 12
1/8 1/32 1600 511 551 18 16
1/16 1/64 6400 2175 2255 20 21
1/2 1/16 324 35 53 14 9
1/4 1/32 1296 207 243 22 14
1/8 1/64 5184 959 1031 24 20
1/16 1/128 20736 4095 4239 23 23

Tab. 1: Scalability of FETI and TFETI.

The table also shows numbers of primal variables and numbers of dual variables
for both FETI and TFETI. We observe from the last two columns that performances
of FETI and TFETI are close and that both algorithms exhibit the numerical scal-
ability as can be seen from number of the conjugate gradient (CG) steps.

Figure 4 shows the case corresponding to the first line in Table 1, i.e. H = 1/2
and h = 1/4. There are four sub-domains there, each with nine primal variables
so that the total number is 36. The FETI dual variables are explicitly depicted.
The number of the TFETI dual variables is obtained as the sum of the FETI dual
variables and the Dirichlet boundary conditions, which are indicated by triangles.

3.2. Contact problem of two cylinders

Consider contact of two cylinders with parallel axes. The diameter of the upper
cylinder Ru = 1 m and of the lower one Rl = ∞. In spite of the fact that it is
a 2D problem, it is modelled with 3D continuum trilinear elements with two layers
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Fig. 4: Decomposition and discretisation of the domain.

of them along the axis of symmetry of the upper cylinder. Nevertheless, it is clear
that number of layers is irrelevant. The boundary conditions are imposed in such
a way that from the physical viewpoint it is the plane strain problem. The model
consists of 8904 elements and 12765 nodes. The upper cylinder is loaded by 40 MN/m
along the upper line of the upper cylinder.

Figure 5 shows solution to linearly elastic and linearly geometric problem in terms
of the deformed mesh. The material properties are as follows: Young’s modulus
E = 2.0× 1011 Pa and Poisson’s ratio ν = 0.3.

The second problem was computed on the same mesh with the same loading,
but we considered linearly–elastic–perfectly–plastic material with yield stress σY =
800 MPa. We also considered the geometric non-linearity, i.e. large displacements
and finite rotations. The deformed mesh is depicted in Figure 6.

Fig. 5: Deformed mesh, linear problem.
Fig. 6: Deformed mesh, non-linear
problem.
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3.3. Pin-in-hole contact problem

Consider problem of a circular pin in circular hole with small clearance. The
radius of the hole is 1 m and the pin has its radius by 1% smaller. Again, the 2D
problem is modelled with 3D trilinear elements. The model consists of 15844 elements
and 28828 nodes. The pin is loaded along its centre line by 133 MN/m. The geometric
non-linearity was considered. The material properties are the same as in the previous
case.

Figure 7 shows von Mises stress distribution on the deformed mesh.

Fig. 7: Deformed mesh, non-linear problem, von Mises stress.

4. Conclusion

A new variant of the original FETI domain decomposition method was presented.
It is called TFETI and its basic idea, in comparison with FETI, consists in replace-
ment of Dirichlet boundary conditions by Lagrange multipliers or forces in this con-
text. It is of great importance from the computational point of view, because the
defect of stiffness matrices of all sub-domains is the same and its magnitude is known
beforehand. Numerical experiments show that algorithm stemming from TFETI ex-
hibits the numerical scalability. We also show results of solution to contact problems
by the FETI method.
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AN EFFICIENT IMPLEMENTATION OF THE SEMI-IMPLICIT
DISCONTINUOUS GALERKIN METHOD FOR COMPRESSIBLE

FLOW SIMULATION∗

Vı́t Doleǰśı

Abstract

We deal with a numerical simulation of the inviscid compressible flow with the
aid of the combination of the discontinuous Galerkin method (DGM) and backward
difference formulae. We recall the mentioned numerical scheme and discuss imple-
mentation aspects of DGM, particularly a choice of basis functions and numerical
quadratures for integrations. An illustrative numerical example is presented.

1. Introduction

Our aim is to develop a sufficiently robust, accurate and efficient numerical
scheme for a simulation of compressible flows. Among several types of numerical
schemes the discontinuous Galerkin method (DGM) seems to be a promising tech-
nique, see e.g., [2], [3], [5], [8], [9]. DGM is based on a piecewise polynomial but dis-
continuous approximation and represents a generalization of the finite element and
finite volume methods. Although authors mostly claim that DGM is very suitable
for the compressible flow simulation they admit one disadvantage: a high computa-
tional cost which prevents DGM from practical applications. Therefore an efficient
implementation exhibits a challenging task.

In this paper we recall the semi-implicit numerical scheme proposed in [4],which is
based on a combination of DGM for the space semi-discretization and the backward
difference formula for the time discretization (Section 3.). Then we discuss some
implementation aspects with respect to the CPU time, particularly a choice of the
basis functions and numerical quadratures for integrations (Section 4.). Finally, one
numerical example of an unsteady inviscid compressible flow through the forward
facing step is presented for an illustration.

2. Problem formulation

The system of the Euler equations describing 2D inviscid compressible flow can
be written in the form

∂w

∂t
+

2∑

s=1

∂f s(w)

∂xs

= 0 in QT = Ω× (0, T ), (1)

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of Edu-
cation of the Czech Republic and was partly supported by the Grant No. 316/2006/B-MAT/MFF
of the Grant Agency of Charles University Prague.

74



where Ω ⊂ IR2 is a bounded polygonal domain occupied by a gas, T > 0 is the
length of a time interval, w = (w1, . . . , w4)

T = (ρ, ρv1, ρv2, e)T is the state vector
and f s(w) = (ρvs, ρvsv1 + δs1p, ρvsv2 + δs2p, (e + p) vs)

T, s = 1, 2, are the inviscid
(Euler) fluxes. We use the following notation: ρ – density, p – pressure, e – total
energy, v = (v1, v2) – velocity, δsk – Kronecker symbol, γ > 1 – Poisson adiabatic
constant. The equation of state implies that p = (γ−1) (e−ρ|v|2/2). The system (1)
is equipped with a set of initial and boundary conditions, for details see, e.g., [7].

3. Discretization

In [4], we presented the discretization of the Euler equations (1) by the discon-
tinuous Galerkin method (DGM). Therefore we do not derive the numerical scheme
again but only present the main relations.

Let Th ≡ {Ki}i∈I denote a triangulation of the closure Ω of the domain Ω into
a finite number of closed elements (triangles or quadrilaterals) Ki, i ∈ I with mutu-
ally disjoint interiors. Let ∂Ki ≡ ∪j∈S(i)Γij ∀Ki ∈ Th, where S(i), i ∈ I are suitable
index sets, Γij is either a common face between neighbouring elements Ki and Kj

or a boundary face (i.e. Γij ⊂ ∂Ω). Moreover, nij = ((nij)1, (nij)2) is the unit outer
normal to ∂Ki on the face Γij.

The approximate solution of (1) is sought in the space of discontinuous piecewise
polynomial functions Sh defined by

Sh ≡ [Sh]
4, Sh ≡ Sp,−1(Ω, Th) ≡ {v; v|K ∈ P p(K) ∀K ∈ Th}, (2)

where P p(K) denotes the space of all polynomials on K of degree at most p ≥ 0, p is
an integer. For wh,ϕh ∈ Sh we introduce the forms

(wh,ϕh) =
∫

Ω
wh(x) ·ϕh(x) dx, (3)

bh(wh,ϕh) = − ∑

K∈Th

∫

K

2∑

s=1

f s(wh) · ∂ϕh

∂xs

dx

+
∑

Ki∈Th

∑

j∈S(i)

∫

Γij

H(wh|Γij
,wh|Γji

,nij) ·ϕhdS,

where H is a numerical flux, w(t)|Γij
and w(t)|Γji

are the values of w on Γij consid-
ered from the interior and the exterior of Ki, respectively, and at time t. The values
of w(t)|Γji

for Γij ⊂ ∂Ω are given by the boundary conditions, for details, see [7].
Then we define the semidiscrete problem:
Definition 1: Function wh is a semidiscrete solution of the problem (1), if

a) wh ∈ C1([0, T ]; Sh), (4)

b)

(
∂wh(t)

∂t
,ϕh

)
+ bh(wh(t),ϕh) = 0 ∀ϕh ∈ Sh ∀ t ∈ (0, T ),

c) wh(0) = w0
h,
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approximation
#dof P1 P2 P3

FEM n 2.5n 6n
DGM 6n 12n 20n

Tab. 1: Comparison of degree of freedom of DGM and FEM for a triangular grid having
n vertices.

where w0
h ∈ Sh denotes the initial condition. Here C1([0, T ]; Sh) is the space of

continuously differentiable mappings of the interval [0, T ] into Sh.
The problem (4), a) – c) exhibits a system of ordinary differential equations for

wh(t) which has to be discretized by a suitable ODE method. In [4] we introduced
the semi-implicit discretization of (4), a) – c), where the form bh(·, ·) was linearized
and then the linear terms were treated implicitly by a multi-step backward differ-
ence formula and the nonlinear terms were approximated by a suitable higher order
explicit extrapolation. Then the full space-time discretization leads to a system of
linear algebraic equations at each time level, the numerical scheme is practically
unconditionally stable and has a high order of accuracy with respect to the time
coordinate.

Since for the purposes of this paper an exact form of the time discretization is
not important we write the full space-time discretization schematically by

(
M + τkC(wk

h)
)
wk+1

h = g(wk
h), k = 0, 1, . . . ,

where wk
h ∈ Sh, k = 0, 1, . . . represents an approximation of the solution at t = tk,

M is the mass matrix (6), C(·) is a matrix representing the form bh(·, ·), g(·) is
a right-hand-side and τk ≡ tk+1 − tk is a time step. For more details see [4].

4. Implementation aspects

Although DGM exhibits a very promising approach for a simulation of com-
pressible flows, its main disadvantage is a higher number of degrees of freedom in
comparison with the classical finite element method (FEM) which leads to a higher
requirement on CPU time. Table 1 compares the degrees of freedom of DGM and
FEM on a triangular grid with n vertices (than the number of triangles ≈ 2n) for
piecewise linear, quadratic and cubic approximations. We observe several times
higher number of degrees of freedom for DGM than FEM. Therefore a very efficient
implementation is a natural requirement for an industrial use of DGM. We discuss
two items: choice of basis functions and numerical quadratures. Other aspects (e.g.
linear solver, preconditioning,. . . ) are a subject of the future research.

4.1. Choice of basis

For a numerical simulation of compressible flows it is suitable to use meshes con-
sisting of triangles and quadrilaterals since numerical experiments show that quadri-
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laterals are better for a resolution of effects within boundary layers around solid
walls whereas triangles are more suitable for capturing of discontinuities (e.g., shock
waves) with a general direction. An use of the Lagrangian basis known from FEM is
not suitable for a combination of triangles and quadrilaterals. Since we have a discon-
tinuous approximation we can employ a local basis on each element independently.
A natural choice is an use of the Taylor basis on element Ki ∈ Th in the form

{ψKi
j }dofKi

j=1 ≡ {(x1 − xKi
1 )nx(x2 − xKi

2 )ny , nx, ny ≥ 0, nx + ny ≤ p}, (5)

where p is the degree of the polynomial approximation on Ki, dofKi
= (p+1)(p+2)/2

is the number of degree of freedom on Ki and (xKi
1 , xKi

2 ) is the barycentre of Ki.
However, numerical experiments show that the Taylor basis (5) is not suitable

for a computations, since the mass matrix defined by

M ≡
{
m(Ki,ni),(Kj ,nj)

}nj=1,...,dofKj
,Kj∈Th

ni=1,...,dofKi
,Ki∈Th

, m(Ki,ni),(Kj ,nj) ≡
∫

Ω
ψKi

ni
ψKj

nj
dx (6)

has elements with very different magnitudes which causes a slow convergence of the
linear algebraic problem. In order to save some CPU-time it is possible to use an
approach [1] where basis (5) is replaced by the following one

{ψ̃Ki
j }dofKi

j=1 , ψ̃Ki
j ≡ ψKi

j

‖ψKi
j ‖L2(Ω)

, j = 1, . . . , dofKi
, Ki ∈ Th. (7)

Based on numerical experiments we observed that the choice of the basis (7) saves
the computational time approximately 50% in comparison with the basis (5).

We extended the idea from [1] in such a way that not only “normalization” but
the full orthonormalization of the basis (5) is carried out. So that we employ the
basis

{ψ̄Ki
j }dofKi

j=1 , such that (ψ̄Ki
j , ψ̄Ki

l )L2(Ω) = δjl, j, l = 1, . . . , dofKi
, Ki ∈ Th. (8)

The orthonormalization is carried out by the Grant-Schmidt ortogonalization process.
Although it is a known fact, that this algorithm is ill-conditioned we do not observed
any problem with the stability of the Grant-Schmidt ortogonalization. It is caused
by the fact that the dimension of the finite element space on each element (dofKi

)
is small and moreover if the basis is not (exactly) orthogonal it does not mind. We
observe that the choice of the basis (8) saves the computational time approximately
90% in comparison with the basis (5).

4.2. Numerical integration

The integrals in (3) have to be evaluated with the aid of suitable numerical
quadratures. An use of a numerical quadrature with a low order of accuracy can
cause a loss of accuracy and on the other hand a numerical quadrature with a higher
number of integration nodes requires longer CPU time. Therefore an use of some
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type of integral integ. rule #nodes order
edge Gauss 2p 4p− 1

quadrilateral 2D Gauss (2p)2 4p− 1
triangle Dunavant 3p− 1

Tab. 2: List of the used quadrature rules with the orders of accuracy and the number of
integration nodes, p is the degree of polynomial approximation.

t = 1.0

t = 3.0

Fig. 1: Forward facing step, P3 approximation, Mach number distributions.

“optimal” numerical quadratures is necessary in order to balance the CPU-costs
and the accuracy. Based on numerical experiments the classical Gauss quadrature
formulas were employed for edge integrals. Concerning the volume integrals we used
the 2D version of the Gauss formulas for quadrilateral elements and the Dunavant
rules [6] for triangular elements. Table 2 shows the used quadrature rules with the
orders of accuracy and the number of integration nodes.

In order to obtain a high efficiency of the implementation, the values of the
test functions in integration nodes are evaluated a priori, so that we do not use any
mappings of reference elements to physical ones. Therefore the evaluation of integrals
in (3) exhibits a simple multiplicative multiplications of real arrays. This was the
reason why we use the programming language Fortran 95 which is optimalized for
arrays operations.
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5. Numerical example

We consider a flow through the well-known forward facing step proposed in [10]
with a constant initial condition given by ρ = 1.4, v = (3, 0), p = 1. Figure 1
shows Mach number distributions obtained by P3 approximation on a grid having
1 033 triangles at t = 0.1 and t = 0.3.
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[3] V. Doleǰśı: On the discontinuous Galerkin method for the numerical solution
of the Navier–Stokes equations. Int. J. Numer. Methods Fluids 45, 2004, 1083–
1106.
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NUMERICAL SIMULATION OF INTERACTION OF FLUIDS
AND SOLID BODIES∗

Lenka Dubcová, Miloslav Feistauer, Petr Sváček

1. Introduction

In this work we focus on the numerical simulation of an aeroelastic problem.
We consider two–dimensional viscous incompressible flow around an airfoil with two
degrees of freedom. It means that the airfoil can oscillate in the vertical direction
and rotate around an elastic axis.

The mathematical model of flow is represented by the Navier–Stokes equations
and the continuity equation. The initial condition and mixed boundary conditions
are added to this system. The numerical simulation consists of the finite element
solution of the Navier–Stokes equations coupled with the system of the ordinary
differential equations, which describes the airfoil motion.

Since the computational domain is time dependent and the grid is moving, we
use the Arbitrary-Lagrangian-Eulerian (ALE) formulation of the Navier–Stokes equa-
tions [7]. High Reynolds numbers (105–106) require the application of a turbulent
model.

2. Formulation of the problem

We assume that (0, T ) is a time interval and by Ωt we denote a computational
domain occupied by the fluid at time t. The boundary ∂Ωt consists of disjoint parts
ΓD, ΓO, ΓWt , where ΓD represents the inlet and inpermeable fixed walls, ΓO the outlet
and ΓWt is the boundary of the airfoil at time t. The fluid flow is characterised by
the velocity u = u(x, t) = (u1(x, t), u2(x, t)) and the kinematic pressure p = p(x, t).
By ρ we denote the fluid density. The ALE method is based on the ALE mapping
of the reference domain Ωref = Ω0 onto the current domain Ωt:

At : Ωref 7→ Ωt, X 7→ x(X, t) = At(X) . (1)

By w we denote the domain velocity: w = ∂
∂t

x(X, t). In the domain Ωt we consider
the Navier–Stokes system written in the following ALE form

∗No. 201/05/0005 of the Grant Agency of the Czech Republic. The research of M. Feistauer was
partly supported by the research project MSM 0021620839 financed by the Ministry of Education
of the Czech Republic.
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DA

Dt
u + [(u−w) · ∇] u +∇p− ν∆u = 0 in Ωt, (2)

div u = 0 in Ωt, (3)

equipped with the initial condition

u(x, 0) = u0, x ∈ Ω0, (4)

and the boundary conditions

a) u|ΓD
= uD, b) u|ΓWt

= ũΓ = w|ΓWt
, (5)

c)− (p− pref ) n + ν
∂u

∂n
= 0 on ΓO.

The vertical displacement H and rotation α of the airfoil are described by the
system [7]

mḦ + Sαα̈ cos α + kHHH + dHHḢ − Sαα̇2 sin α = −L(t),

SαḦ cos α + Iαα̈ + kααα + dααα̇ = M(t), (6)

where m denotes the mass of the airfoil, Sα, Iα are the static moment and the
inertia moment around the elastic axis, kHH , kαα denote the bending stiffness and
the torsional stiffness, dHH , dαα are the structural dampings. The aerodynamic lift
force L(t) and the aerodynamic torsional moment M(t) are define by the relations

L = −
∫

ΓWt

2∑

j=1

τ2jnjdS, M = −
∫

ΓWt

2∑

i,j=1

τijnjr
ort
i dS, (7)

τij = ρ

[
−pδij + ν

(
∂ui

∂xj

+
∂uj

∂xi

)]
, rort

1 = −(x2 − xEO2), rort
2 = x1 − xEO1.

These relations determine the interaction between the moving fluid and the airfoil.

3. Discrete problem

Time discretization. We consider a partition 0 = t0 < t1 < · · · < T, tk = kτ .
On each time level we approximate the solution u(tn) ≈ un and p(tn) ≈ pn and use
the second order two step scheme to approximate the ALE derivative. The unknown
functions un+1 : Ωtn+1 7→ IR2 and pn+1: Ωtn+1 7→ IR satisfy the system

3un+1 − 4ûn + ûn−1

2τ
+

(
(un+1 −wn+1) · ∇

)
un+1 +∇pn+1 − ν∆un+1 = 0,

div un+1 = 0, (8)

81



and the boundary conditions (5). The function ûj denotes the velocity at time tj
transformed to the domain Ωtn+1 .

Space discretization. System (8) is discretized by the finite element metod,
based on the weak formulation of our problem: on each time level we want to find
the weak solution U = (u, p) = (un+1, pn+1) ∈ W ×Q, which satisfies

a(U,U, V ) = f(V ), for all V = (v, q) ∈ X ×Q, (9)

and u fulfills the boundary conditions (5), a)–b). Here

W = (H1(Ω))2, X = {v ∈ W ; v|ΓD∪ΓWt
= 0}, Q = L2(Ω), (10)

a(U∗, U, V ) =
3

2τ
(u,v)Ω + ν (∇u,∇v)Ω + (((u∗ −wn+1) · ∇)u, v)Ω

− (p,∇ · v)Ω + (∇ · u, q)Ω,

f(V ) =
1

2τ
(4ûn − ûn−1, v)Ω −

∫

ΓO

prefv · n dS,

U = (u, p), V = (v, q), U∗ = (u∗, p).

(The symbol (·, ·) denotes the L2(Ω)-scalar product.) In order to apply the finite el-
ement method, we approximate the spaces W,X, Q by finite dimensional subspaces
Wh, Xh, Qh, which are defined on a triangulation Th, and we want to find the ap-
proximate solution Uh = (uh, ph) ∈ Wh ×Qh such that

a(Uh, Uh, Vh) = f(Vh) ∀Vh ∈ Xh ×Qh, (11)

and uh satisfies an approximation of conditions (5), a)–b). In our computations we
use

Qh = {q ∈ Q ∩ C(Ω̄); q|K ∈ P 1(K),∀K ∈ Th},
Wh = {v ∈ W ∩ (C(Ω̄))2; v|K ∈ (P 2(K))2,∀K ∈ Th}, Xh = Wh ∩X.

The couple (Xh, Qh) satisfies the Babuška-Brezzi condition. Because the Reynolds
numbers are high, we use a suitable stabilization of the FEM. Here we apply the
approach proposed by Lube in [4]. (For more details, see [7].) The solution of the
nonlinear discrete problem is realized by the Oseen iterations.

4. Modelling of turbulence

The flow with a sufficiently small Reynolds number Re is laminar, but if Re
increases, the flow loses its stability and becomes turbulent. We apply the alge-
braic turbulent model [5], which is based on the Reynolds averaging leading to the
Reynolds averaged Navier-Stokes equations

div u = 0, (12)

∂ui

∂t
+ (u · ∇) ui +

∂p

∂xi

− ν∆ui −
2∑

j=1

∂Rji

∂xj

= 0, i = 1, 2, (13)
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for averaged quantities u, p + p′. The components Rji = −u′iu
′
j, i, j = 1, 2, of the

Reynolds stress tensor are expressed by Boussinesq’s hypothesis in the form

Rij = νT

(∂ui

∂xj

+
∂uj

∂xi

)
, (14)

(see, e.g. [3]). Here νT is called the turbulent viscosity. It depends on the coordinates,
velocity and other variables. To compute νT we use two algebraic models designed
by Baldwin-Lomax and Rostand [5].

System (12), (13) and (14) is again rewritten in the ALE form and discretized sim-
ilarly as in Section 3 with the only difference in the definition of the form a(U∗, U, V ).
The details are contained in [2].

5. Numerical results

5.1. Flow along a flat plate

In order to validate the proposed technique, we compare our numerical results of
the simulation of flow along a flat plate with the theory of turbulent flow [6], using
the Baldwin-Lomax model and the Rostand model. Let us define the function Y +

and u+

Y +(Y ) =
uτY

ν
, u+ =

U∞
uτ

,

where Y is the distance from the plate, U∞ is the far field velocity and uτ is the
wall-shear velocity.

Figure 1 (left) shows the comparison of the numerical results with theory. Fig-
ure 1 (right) shows the comparison of theoretical dependence of the friction coeffi-
cient Cf on the local Reynolds number Rex = U∞ x1/ν with our computations. The
agreement of the computation with theory is very good.
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Fig. 1: The function u+ in dependence on Y + (left); The friction coefficient (right).
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5.2. Flow along the airfoil NACA 0012

Now let us consider flow past the airfoil NACA 0012, which oscillates around the
elastic axis (25% of the length of the airfoil) with prescribed frequence f = 30 Hz
and total amplitude α∗ = 5◦. We compute the pressure coefficient

Cp =
P

1
2
ρU2∞

,

and evaluate Cpmean , the time mean value of Cp(t) and the so-called real and imaginary
components of the amplitudes C ′

p and C ′′
p from the relation

Cp(t) = Cpmean + C ′
p sin(ωt) + C ′′

p cos(ωt).

In Figures 2 and 3, there is the comparison of the numerical results with experi-
ments [1]. Although the algebraic model of turbulence is very simple, it gives good
results.

Finally, the coupled problem of flow induced airfoil vibrations is solved using the
finite element method for the flow problem, combined with the Runge-Kutta method
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Fig. 4: Flow induced airfoil vibrations for U∞ = 40m/s

for system (6) transformed to a first order system. In Figure 4, the displacement
H and rotation angle α are plotted in dependence on time for the far field velocity
U∞ = 40m/s. In this case the vibrations are not damped and we get the regime
called flutter.
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FINITE VOLUME WLSQR SCHEME AND ITS APPLICATIONS
TO TRANSONIC FLOWS∗

Jǐŕı Fürst

Abstract

This article describes the development of a high order numerical method for the
solution of compressible transonic flows. The discretisation in space is based on the
standard finite volume method of Godunov’s type. A higher order of accuracy is
achieved by a piecewise polynomial interpolation similar to the ENO or weighted
ENO methods (see e.g. [8]).

1. Introduction

The weighted least square reconstruction (WLSQR) of pointwise data at the cell
faces from given cell averages is developed with the aim to simplify the implementa-
tion of the standard ENO procedure especially for the case of unstructured meshes.
The reconstruction procedure uses single stencil and computes an interpolation poly-
nomial by minimizing the weighted interpolation error over the cells in this stencil.

The complete finite volume scheme equipped with the piecewise linear recon-
struction was successfully used for the solution many transonic flow problems (see
e.g. [4, 5]). This article presents the basic analytical results as well as some new
numerical experiments with the WLSQR scheme especially for the case of inviscid
3D flows and turbulent flows in 2D. The WLSQR reconstruction has been used for
the conservative variables as well as for the model of turbulence.

The flow is described by the set of the Euler or the Navier-Stokes equations in
conservative form

Wt + F (W )x + G(W )y = F v(W )x + Gv(W )y + S(W ), (1)

where W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F (W ) and G(W )
are the inviscid fluxes, F v(W ) and Gv(W ) are the viscous fluxes (F v = Gv = 0 for
the case of the Euler equations) and S(W ) is a source term, for more details see [2].

The equations equipped with proper boundary conditions are solved numerically
using an unstructured mesh and a finite volume scheme with all unknowns located
at cell centers. The fluxes through the cell interfaces are approximated by the Gauss
quadrature with the physical fluxes replaced by the numerical ones

∫

Ci∩Cj

(F (W ), G(W )) · d~S ≈
J∑

q=1

ωqF
AUSMPW+(WL

ijq,W
R
ijq,

~Sijq). (2)

∗This work was supported by grant No. 201/05/0005 of the Grant Agency of the Czech Republic
and by the Research Plan MSM No. 6840770010.
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Here WL
ijq and WR

ijq denotes the values of the vector of unknowns interpolated to
the Gauss point q of the interface Ci ∩ Cj from the left cell or from the right cell,
respectively. FAUSMPW+ denotes the numerical flux described in [9] and ωq are the
weights of the Gauss quadrature. The resulting finite volume scheme for inviscid
case can be then written in semi-discrete form

|Ci|dWi

dt
= − ∑

j∈Ni

J∑

q=1

ωqF
AUSMPW+(WL

ijq,W
R
ijq, ~Sijq). (3)

Here Ci is the i-th cell, Wi =
∫
Ci

W (~x, t)d~x, and Ni = {j : dim(Ci ∩ Cj) = 1}.
The basic first order scheme can be obtained by setting J = 1, WL

ijq = Wi, and
WR

ijq = Wj.

2. The WLSQR interpolation

However the basic first order scheme posses very good mathematical properties,
it is well known, that it is very diffusive. Therefore a use of higher order schemes is
preferred, especially for the viscous flow calculations. The higher order scheme can
be constructed within this framework simply by improving the interpolation of WL

and WR. There exist several methods for the construction of a stable interpola-
tion, the most known are the limited least squares of Barth [1], the ENO/WENO
schemes [8], or the TVD schemes [7].

The use of limiters as in the TVD or the Barth’s schemes usually cut the order
of accuracy near extrema and may also hamper the convergence to a steady state.
On the other hand, the implementation of ENO/WENO schemes is relatively com-
plicated for unstructured meshes. Therefore a novel reconstruction procedure was
introduced in [5]. Denote by φ a component of W . Then the interpolation polyno-
mial Pi(~x; φ) for the cell Ci is constructed by minimizing the weighted interpolation
error 1

err :=
∑

j∈Mi

[
wij

(∫

Cj

P̃ (~x; φ) d~x− |Cj|φj

)]2

(4)

with respect to the conservativity constraint

∫

Cj

Pi(~x; φ) d~x = |Cj|φj. (5)

The weights wij are chosen in such a way, that the magnitude of w is big whenever
the solution is smooth and w is close to zero when the solution is discontinuous,
see formula (6). The single stencil Mi is selected according to the order of the
polynomial P .

1Herefrom comes the name of the method - the Weighted Least Square Reconstruction.
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2.1. The second order scheme

The formally second order scheme can be obtained by using linear polynomials Pi.
For this case, the choice of Mi := M1

i = {j : Ci ∩ Cj 6= ∅} (i.e. cells touching Ci at
least by a vertex) has been tested together with the weights

wij =

√√√√ h−r

∣∣∣φi−φj

h

∣∣∣
p
+ hq

, j ∈Mi, (6)

with h being the distance between cell centers of Ci and Cj and p = 4, q = −3, and
r = 3. The analysis of simplified cases has been carried out in [4] showing a stability
of WLSQR interpolation for special discontinuous data.

2.2. The third order scheme

This approach can be extended to a scheme which has formally third order of
accuracy by using quadratic polynomials Pi. It is also necessary to enlarge the stencil
to Mi := M2

i = M1
i ∪ {j : Cj ∩M1

i 6= ∅} (i.e. the stencil is extended by the cells
touching M1

i ). Although there are no analytical results for quadratic reconstruction,
the same definition of wij, j ∈M2

i has been used successfully.

2.3. Analysis of weights in WLSQR interpolation

The complete analysis of this three-parametric family of weights is very difficult
task, therefore we investigate here only effects of p and q. The value of r was kept
constant r = 3 in this work.

In [3] the theoretical analysis of 1D piecewise linear reconstruction using regular
mesh has been developed with the following results:

Lemma 2.1 Assume a sufficiently smooth function u(x) having cell averages ui and
weights w 6= 0. Then the piecewise linear WLSQR interpolation polynomial approx-
imates u(x) with second order of accuracy, i.e.

P (x; u) = u(x) +O(h2). (7)

In the case of discontinuous data the total variation of the interpolant for u(x) defined
as u(x) = 1 for x < xshock and u(x) = 0 for x ≥ xshock has been analyzed and the
following TV-estimate has been proven

TV (P (x; u)) ≤ TV (u) + 6h1+q/p. (8)

Several numerical experiments for piecewise linear WLSQR method in [3] have
shown, that the choices p, q, r = 4,−2, 3 or 4,−3, 3 are appropriate at least for
inviscid transonic flows in test channel. Therefore we chose here p, q, r = 4,−2, 3
also for the piecewise quadratic WLSQR method.

88



2.4. Numerical experiments with the WLSQR scheme

The numerical analysis of the order of accuracy of an upwind scheme with
WLSQR interpolation has been done in [3] for the case of linear advection in 2D
and for the non-linear Burgers equation in 2D. The numerical experiments proved,
that the order of accuracy corresponds well to the order of the reconstruction for the
case of smooth data i.e. the scheme without reconstruction has order of accuracy
almost 1, the scheme with piecewise linear reconstruction almost 2, and finally the
scheme with quadratic reconstruction almost 3. On the other hand, the order of
accuracy drops to one as soon as there are moving discontinuities.

3. Applications in turbomachinery

The above mentioned numerical method has been applied to the solution of tran-
sonic flows in 2D turbine cascades. The compressible viscous flow is described by the
set of the Euler equations or the Favre averaged Navier-Stokes equations (RANS)
coupled with the TNT k−ω model of turbulence (see [10]). The turbulent transonic
flow through a 2D turbine cascade was solved using a hybrid mesh with quadrilater-
als around the profile, in the mixing region behind the outlet edge and at the outlet
part of boundary. The remaining part of the domain was filled up with triangles.
The total number of elements was 24087 with y+

1 < 1 (here y+
1 is the size of the first

cell near the wall in normal direction in wall coordinates, see [11]).
Figure 1 shows the isolines of the Mach number the detail of isolines of entropy

Fig. 1: Isolines of Mach number (above) and entropy (below) in 2D turbine cascade, second
(left) and third (right) order solution.

89



Fig. 2: Isolines of Mach number for inviscid flow through a 3D turbine stator, WLSQR
method on the left (coarser mesh), TVD MC scheme on the right (finer mesh).

near the outlet edge obtained with the help of the second and the third order method
for the flow characterized by the outlet Mach number M2i = 0.906 and Reynolds
number Re = 848000. The isolines of entropy document clearly the difference be-
tween those two results - the second order scheme gives stationary solution whereas
the wake is unsteady for the third order solution.

Last example is the inviscid transonic flow through 3D turbine cascade. We
assume that the flow is periodic from blade to blade and therefore it is possible to
solve the flow field just in one period. The domain is discretized using a structured
mesh with hexahedral cells. The inflow and outflow conditions depend on the radius.
Figure 2 compares the distribution of Mach number obtained with the piecewise
linear WLSQR method with AUSM flux using a structured mesh with 100 × 20 ×
20 cell. It can be seen, that the solution is comparable to the reference solution
obtained with TVD MacCormack scheme with finer mesh having 200× 40× 40 cells.
Similar results were also obtained by J. Halama [6] using cell vertex Ni’s scheme with
Jameson’s artificial viscosity.

4. Conclusion

The article describes briefly the weighted least-square reconstruction procedure.
The proposed WLSQR reconstruction posses good stability even for the case of
transonic turbulent flows and is easily extensible to 3D case as well as to third order
of accuracy. The difference between second and third order scheme was demonstrated
for the case of 2D flows through a turbine. The third order scheme uses less numerical
dissipation and produces an unsteady solution in this case.
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TWO-SIDED A POSTERIORI ESTIMATES OF GLOBAL
AND LOCAL ERRORS FOR LINEAR ELLIPTIC TYPE

BOUNDARY VALUE PROBLEMS∗

Antti Hannukainen, Sergey Korotov

Abstract

The paper is devoted to the problem of reliable control of accuracy of approximate
solutions obtained in computer simulations. This task is strongly related to the so-
called a posteriori error estimates, giving computable bounds for computational errors
and detecting zones in the solution domain, where such errors are too large and certain
mesh refinements should be performed. Mathematical model described by a linear
elliptic (reaction-diffusion) equation with mixed boundary conditions is considered.
We derive in a simple way two-sided (upper and lower) easily computable estimates
for global (in terms of the energy norm) and local (in terms of linear functionals
with local supports) control of the computational error, which is understood as the
difference between the exact solution of the model and the approximation. Such two-
sided estimates are completely independent of the numerical technique used to obtain
approximations and can be made as close to the true errors as resources of a concrete
computer used for computations allow.

Keywords: a posteriori error estimation, error control in energy norm, error control
in terms of linear functionals, reaction-diffusion equation, mixed boundary conditions.

MSC: 65N15, 65N30

1. Introduction

Many physical and mechanical phenomena can be described by means of math-
ematical models presenting boundary value problems of elliptic type [7, 15]. Various
numerical techniques (the finite difference method, the finite element method (FEM),
the finite volume method etc.) are well developed for finding approximate solutions
for such problems, see, e.g., [6]. However, in order to be practically meaningful,
computer simulations always require an accuracy verification of computed approx-
imations. Such a verification is the main purpose of a posteriori error estimation
methods.

In the present paper, we recall two different ways of measuring the computational
error, which is understood as the difference u− ū between the exact solution u and
approximation ū, in the global (energy) norm and in terms of linear bounded func-
tionals. These two ways of measurement (and also of control – via a posteriori error

∗The first author was supported by the project no. 211512 from the Academy of Finland. The
second author was supported by the Academy Research Fellowship no. 208628 from the Academy
of Finland.
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estimation procedures) of the error are very natural and commonly used nowadays
in both mathematical and engineering communities. The global error estimation
(see [1, 2, 3, 4, 12, 13, 16, 18, 19, 25, 26] and references therein) normally gives
a general presentation on the quality of approximation and a stopping criterion to
terminate the calculations. However, practitioners are often interested not only in
the value of the overall error, but also in errors over certain critical (and usually
local) parts of the solution domain (for example, in fracture mechanics – see [23, 24]
and references therein). This reason initiated another trend in a posteriori error es-
timation which is based on the concept of control of the computational error locally.
One common way to perform such a control is to introduce a suitable linear func-
tional ` related to subdomain of interest and to construct a posteriori computable
estimate for `(u− ū), see [4, 5, 8, 11, 14, 20].

It is worth to mention here that most of estimates proposed so far strongly rely
on the fact that the computed solutions are true finite element (FE) approximations
which, in fact, rarely happens in real computations, e.g., due to quadrature rules,
forcibly stopped iterative processes, various round-off errors, or even possible bugs
in FE codes.

In this work, on the base of a model elliptic problem with mixed (Dirichlet/
Neumann) boundary conditions, we present two relatively simple technologies for
obtaining computable guaranteed two-sided (upper and lower) a posteriori error es-
timates needed for reliable control in both global (in the energy norm) and local (in
terms of linear functionals) ways. The estimates derived are valid for any conforming
approximations independently of numerical methods used to obtain them, and can
be made arbitrarily close to the true errors. In real-life calculations this closeness
only depends on resources of a concrete computer used. Some variant of the present
paper was published as a preprint [9] in February 2006 (see also [10]).

2. Formulation of problem

For standard definitions of functional spaces and finite element terminology used
in the paper we refer to [6].

2.1. Model problem

We introduce the model elliptic problem which consists of the governing equa-
tion (1) and mixed (Dirichlet/Neumann) boundary conditions (2)–(3): Find a func-
tion u such that

−div(A∇u) + cu = f in Ω, (1)

u = u0 on ΓD, (2)

νT · A∇u = g on ΓN , (3)

where Ω is a bounded domain in Rd with a Lipschitz continuous boundary ∂Ω, such
that ∂Ω = ΓD ∪ ΓN , measd−1 ΓD > 0 and ν is the outward normal to the boundary.
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It is common practice to pose problem (1)–(3) in the so-called weak form: Find
u ∈ u0 + H1

ΓD
(Ω) such that

∫

Ω

A∇u · ∇w dx +

∫

Ω

cuw dx =

∫

Ω

fw dx +

∫

ΓN

gw ds ∀w ∈ H1
ΓD

(Ω), (4)

where
H1

ΓD
(Ω) := {v ∈ H1(Ω) | v = 0 on ΓD}.

For the purposes of the weak formulation, we assume, that f ∈ L2(Ω), u0 ∈
H1(Ω), g ∈ L2(ΓN), c ∈ L∞(Ω), the coefficient matrix A is symmetric, with entries
aij ∈ L∞(Ω), i, j = 1, . . . , d, and is such that

C2|ξ|2 ≥ A(x)ξ · ξ ≥ C1|ξ|2 ∀ξ ∈ Rd for a.e. x ∈ Ω. (5)

In addition, the coefficient c is assumed to be either zero or bounded away from zero
by a positive constant c0, i.e. c ≡ 0 in Ω \ Ωc, where

Ωc := supp c = {x ∈ Ω | c(x) ≥ c0 > 0}. (6)

If we define bilinear form a(·, ·) and linear form F (·) as follows

a(v, w) :=

∫

Ω

A∇v · ∇w dx +

∫

Ω

cvw dx, v, w ∈ H1(Ω),

F (w) :=

∫

Ω

fw dx +

∫

ΓN

gw ds, w ∈ H1(Ω),

then weak formulation (4) can be written in a short form: Find u = u0 + u∗, where
u∗ ∈ H1

ΓD
(Ω), such that a(u,w) = F (w) ∀w ∈ H1

ΓD
(Ω).

Remark 2.1 The weak solution defined by (4) exists and is unique in view of well-
known Lax-Milgram lemma (see, e.g., [6]).

The so-called energy functional J of problem (4) is defined as follows

J(w) :=
1

2
a(w, w)− F̄ (w), w ∈ H1(Ω), (7)

where F̄ (w) := F (w) − a(u0, w), and the corresponding energy norm is defined as√
a(·, ·).

Remark 2.2 It is well-known that problem (4) (namely, finding the function u∗) is
equivalent to the problem of finding the minimizer (which is equal to u∗) of the energy
functional (7) over the space H1

ΓD
(Ω).
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2.2. Types of error control

Let ū = u0 + ū∗ be any function from u0 + H1
ΓD

(Ω) (e.g., computed by some
numerical method) considered as an approximation of u. It is a natural practice to
measure the overall accuracy of the approximation ū in terms of the above-defined
energy norm. Thus, our first goal is to construct reliable and easily computable
two-sided estimates for controlling the following value

a(u− ū, u− ū) =

∫

Ω

A∇(u− ū) · ∇(u− ū) dx +

∫

Ω

c(u− ū)2 dx. (8)

The second type of error control considered in the paper is two-sided estimation
of the value of the difference u− ū in terms of a linear bounded functional `

`(u− ū). (9)

Remark 2.3 It is clear that existence of an estimate for (9) also allows to estimate
the value `(u) (often called quantity of interest or goal-oriented quantity [1]). Really,
`(u) = `(u − ū) + `(ū) where `(ū) is computable and `(u − ū) is estimated. The
value of `(u) can be sometimes more important to know than the solution u itself
(see [23, 24]).

Remark 2.4 If the functional ` in (9) is defined as some integral over small subdo-
main (or line) in Ω, then reliable two-sided estimation of `(u − ū) helps to control
the behaviour of the error u − ū locally in that subdomain (or over the line). For
example, one can be interested in estimation of `(u− ū) =

∫
S

ϕ(u− ū) dx with S be
a subdomain in Ω or a line in ΓN (where the solution is also unknown), see [11] for
more details and numerical results in this respect.

2.3. Inequalities and constants

In what follows we shall need the Friedrichs inequality

‖w‖0,Ω ≤ CΩ,ΓD
‖∇w‖0,Ω ∀w ∈ H1

ΓD
(Ω), (10)

and the inequality in the trace theorem

‖w‖0,∂Ω ≤ C∂Ω‖w‖1,Ω ∀w ∈ H1(Ω), (11)

where CΩ,ΓD
and C∂Ω are positive constants, depending only on Ω, ΓD, and ∂Ω. The

above used denotation ‖ · ‖0,Ω and ‖ · ‖1,Ω stand for the standard norms in L2(Ω)
and H1(Ω), respectively. The symbol ‖ · ‖0,∂Ω means the norm in L2(∂Ω). Proofs of
inequalities (10) and (11) can be found, e.g., in [17].

3. Two-sided estimates of error in energy norm

In this section we shall employ the denotation χS for a characteristic function of
set S, i.e., χS(x) = 1 if x ∈ S, and χS(x) = 0 if x /∈ S. We also define |||y|||Ω :=√∫

Ω
Ay · y dx for y ∈ L2(Ω,Rd).
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3.1. Upper estimate

Proposition 3.1 For the error in the energy norm (8) we have the following upper
estimate

a(u− ū, u− ū) ≤
∥∥∥ 1√

c
(f + div y∗ − cū)

∥∥∥
2

0,Ωc
+

+ (1 + α)|||A−1y∗ −∇ū|||2Ω +
(
1 +

1

α

)
(1 + β)

C2
Ω,ΓD

C1

‖f + div y∗‖2
0,Ω\Ωc

+
(
1 +

1

α

)(
1 +

1

β

)
C2

Ω,∂Ω‖g − νT · y∗‖2
0,ΓN

, (12)

where α and β are arbitrary positive real numbers, y∗ is any function from

HN(Ω, div) :=
{
y ∈ L2(Ω,Rd) | div y ∈ L2(Ω), νT · y ∈ L2(ΓN)

}
,

and CΩ,∂Ω := C∂Ω

√
1 + C2

Ω,ΓD
/
√

C1.

Proof: First of all, we notice that it actually holds, cf. (6),

a(u− ū, u− ū) = |||∇(u− ū)|||2Ω + ‖√c(u− ū)‖2
0,Ωc . (13)

Further, using the fact that u− ū ∈ H1
ΓD

(Ω) and identity (4) we observe that

a(u− ū, u− ū) =

∫

Ω

f(u− ū)dx +

∫

ΓN

g(u− ū) ds−
∫

Ω

A∇ū · ∇ (u− ū) dx

−
∫

Ω

cū(u− ū) dx =

∫

Ω

(f − cū)(u− ū) dx +

∫

ΓN

g(u− ū) ds

−
∫

Ω

(A∇ū− y∗) · ∇(u− ū) dx−
∫

Ω

y∗ · ∇(u− ū) dx, (14)

where y∗ is any function from the space HN(Ω, div) defined in the formulation of the
theorem. Applying the Green’s formula to the last term in above gives

∫

Ω

y∗ · ∇(u− ū) dx =

∫

ΓN

(νT · y∗)(u− ū) ds−
∫

Ω

divy∗(u− ū) dx.

Using this identity and equation (14) we obtain

a(u− ū, u− ū) =

∫

Ω

A(A−1y∗−∇ū) · ∇(u− ū) dx +

∫

Ω

(f + divy∗− cū)(u− ū) dx

+

∫

ΓN

(g − νT · y∗)(u− ū) ds. (15)

Now, we proceed by estimating the three terms in the right-hand side (RHS) of
equality (15). The first term can be estimated by the Cauchy-Schwarz inequality as
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∫

Ω

A(A−1y∗ −∇ū) · ∇(u− ū) dx ≤ |||A−1y∗ −∇ū|||Ω |||∇(u− ū)|||Ω. (16)

The second term in the RHS of equality (15) can be estimated using Friedrichs
inequality (10), ellipticity condition (5), denotation (6), and a simple inequality
a b ≤ 1

2
a2 + 1

2
b2 as follows

∫

Ω

(f + divy∗ − cū)(u− ū) dx

=

∫

Ωc

1√
c
(f + divy∗ − cū)

√
c(u− ū) dx +

∫

Ω

χΩ\Ωc(f + divy∗ − cū) (u− ū) dx

≤ ‖√c(u− ū)‖0,Ωc

∥∥∥ 1√
c
(f + divy∗ − cū)

∥∥∥
0,Ωc

+‖χΩ\Ωc(f + divy∗ − cū)‖0,Ω ‖u− ū‖0,Ω

≤ 1

2
‖√c(u− ū)‖2

0,Ωc +
1

2

∥∥∥ 1√
c
(f + divy∗ − cū)

∥∥∥
2

0,Ωc
(17)

+
CΩ,ΓD√

C1

‖f + divy∗ − cū‖0,Ω\Ωc |||∇(u− ū)|||Ω.

Finally, the third term can be estimated using inequalities (10) and (11) and the
ellipticity condition (5) as

∫

ΓN

(g − νT · y∗)(u− ū) ds ≤ ‖g − νT · y∗‖0,ΓN
‖u− ū‖0,ΓN

≤ C∂Ω‖g − νT · y∗‖0,ΓN
‖u− ū‖1,Ω ≤ CΩ,∂Ω‖g − νT · y∗‖0,ΓN

|||∇(u− ū)|||Ω. (18)

Using (16), (17), and (18) to estimate the terms on the RHS of (15), we obtain

a(u− ū, u− ū)

≤ 1

2

(
|||A−1y∗ −∇ū)|||Ω + CΩ,∂Ω‖g − νT · y∗‖0,ΓN

+
CΩ,ΓD√

C1

‖f + divy∗ − cū‖0,Ω\Ωc

)2

+
1

2
|||∇(u− ū)|||2Ω +

1

2
‖√c(u− ū)‖2

0,Ωc +
1

2

∥∥∥ 1√
c
(f + divy∗ − cū)

∥∥∥
2

0,Ωc
. (19)

Using now (13) and the final inequality (19), multiplying by two and regrouping,
we immediately get for the error in the energy norm that

a(u− ū, u− ū) = |||∇(u− ū)|||2Ω + ‖√c(u− ū)‖2
0,Ωc ≤

∥∥∥ 1√
c
(f + divy∗ − cū)

∥∥∥
2

0,Ωc

+
(
|||A−1y∗ −∇ū|||Ω +

CΩ,ΓD√
C1

‖f + divy∗‖0,Ω\Ωc + CΩ,∂Ω‖g − νT · y∗‖0,ΓN

)2

. (20)

Finally, using two times the inequality (a + b)2 ≤ (1 + λ)a2 + (1 + 1
λ
)b2, valid for any

λ > 0, for the terms in the round brackets in (20), we get estimate (12).
¤
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3.2. Lower estimate

Proposition 3.2 For the error in the energy norm (8) we have the following lower
bound

a(u− ū, u− ū) ≥ 2(J(ū∗)− J(w)), (21)

where w is any function from H1
ΓD

(Ω) and the functional J is defined in (7).

Proof: First, we prove that

a(u− ū, u− ū) = 2(J(ū∗)− J(u∗)). (22)

Really, we have

2(J(ū∗)− J(u∗)) = a(ū∗, ū∗)− 2F̄ (ū∗)− a(u∗, u∗) + 2F̄ (u∗)

= a(ū∗, ū∗)− a(u∗, u∗) + 2F̄ (u∗ − ū∗) = a(ū∗, ū∗)− a(u∗, u∗) + 2a(u∗, u∗ − ū∗)

= a(ū∗, ū∗) + a(u∗, u∗)− 2a(u∗, ū∗) = a(u− ū, u− ū).

Since u∗ minimizes the energy functional, we have J(u∗) ≤ J(w) ∀w ∈ H1
ΓD

(Ω),
which proves (21). ¤

Remark 3.1 The estimate (21) has a practical meaning only if w satisfies J(w) ≤
J(ū∗). For example, if ū∗ comes from a FE-solution obtained using mesh Sh, suit-
able w can be constructed, e.g., by solving the weak problem (4) on a hierarcially
refined mesh Sτ .

3.3. Comments on two-sided estimates (12) and (21)

• In order to derive the upper (12) and the lower (21) estimates, we did not
specify the function ū to be a finite element approximation (or computed by
some another numerical method). In fact, it is simply any function from the
set u0 + H1

ΓD
(Ω).

• The upper estimate (12) cannot be improved. Really, if one takes y∗ = A∇u,
which obviously belongs to HN(Ω, div), then the last two terms in the right-
hand side of (12) vanish. Further, taking α = 0, we finally observe that the
inequality (12) holds as equality. To prove that the lower estimate (21) cannot
be improved either, we should, obviously, take w = u∗ ∈ H1

ΓD
(Ω) and use (22).

• The upper estimate (12) contains only two global constants, CΩ,ΓD
and C∂Ω,

which do not depend on the computational process. They have to be computed
(or accurately estimated from above) only once when the problem is posed.

• In many works, devoted to a posteriori error estimation, one usually takes
c ≡ 0. In this case a(u − ū, u − ū) = |||∇(u − ū)|||2Ω, the set Ωc = ∅, and the
estimate (12) takes a simpler form
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a(u− ū, u− ū) ≤ (1+α)|||A−1y∗−∇ū|||2Ω+
(
1+

1

α

)
(1+β)

C2
Ω,ΓD

C1

‖f +divy∗‖2
0,Ω

+
(
1 +

1

α

)(
1 +

1

β

)
C2

Ω,∂Ω‖g − νT · y∗‖2
0,ΓN

. (23)

• For the pure Dirichlet boundary condition, the third term in RHS of (23)
vanishes, and, since the estimate is valid for any positive β, we can take it to
be zero. Then, we get the estimate

a(u− ū, u− ū) ≤ (1+α)|||A−1y∗−∇ū|||2Ω +
(
1+

1

α

)C2
Ω,ΓD

C1

‖f +divy∗‖2
0,Ω. (24)

• The upper estimate (24) was first obtained in [19] using complicated tools
of the duality theory, and later it was also obtained in [21] for the Poisson
equation, using the Helmholz decomposition of L2(Ω,Rd). The estimate (23)
is derived in [22] using the duality theory again. Our approach of derivation of
the estimates is different from those used in the above mentioned works and is
simplier.

• In the case of pure Dirichlet conditions, only the constant CΩ,ΓD
has to be

computed or estimated from above.

• In the case of pure Dirichlet condition and if c ≥ c0 > 0 in Ω, we need not
estimate any constants at all.

In what follows we shall use the following denotations for the upper and lower
bounds of the error in the energy norm (8)

M⊕(ū,y∗, α, β) =
∥∥∥ 1√

c
(f + divy∗ − cū)

∥∥∥
2

0,Ωc
+ (1 + α)|||A−1y∗ −∇ū|||2Ω

+
(
1+

1

α

)
(1+β)

C2
Ω,ΓD

C1

‖f +divy∗‖2
0,Ω\Ωc +

(
1+

1

α

)(
1+

1

β

)
C2

Ω,∂Ω‖g−νT ·y∗‖2
0,ΓN

,

and

Mª(ū, w) = 2(J(ū)− J(w)).

Sometimes we shall use only a short denotation M⊕ or Mª for the corresponding
bounds if it does not lead to misunderstanding.
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4. Two-sided estimates for local errors

Two-sided estimates for controlling the error u−ū in terms of linear functional (9)
are essentially based on the usage of an auxiliary (often called adjoint) problem
formulated below.

Adjoint problem: Find v ∈ H1
ΓD

(Ω) such that

∫

Ω

A∇v · ∇w dx +

∫

Ω

cvw dx = `(w) ∀w ∈ H1
ΓD

(Ω).

The adjoint problem can be rewritten in a shorter form similarly to the main
problem (4): Find v ∈ H1

ΓD
(Ω) such that a(v, w) = `(w) ∀w ∈ H1

ΓD
(Ω). In

particular this means, that the bilinear forms of the main and adjoint problems
coincide.

The adjoint problem is uniquely solvable due to the assumption that ` is a linear
bounded functional. However, the exact solution v of it is usually very hard (or even
impossible) to find in analytical form and, thus, we only have some approximation
for v, which we denote by the symbol v̄ in what follows, assuming again only that
v̄ ∈ H1

ΓD
(Ω).

Proposition 4.1 (cf. [8]) The following error decomposition holds

`(u− ū) = E0(ū, v̄) + E1(u− ū, v − v̄),

where

E0(ū, v̄) =

∫

Ω

fv̄ dx +

∫

ΓN

gv̄ ds−
∫

Ω

A∇v̄ · ∇ū dx−
∫

Ω

cv̄ū dx, (25)

E1(u− ū, v − v̄) =

∫

Ω

A∇(u− ū) · ∇(v − v̄) dx +

∫

Ω

c(u− ū)(v − v̄) dx.

The first term E0 is, obviously, directly computable once we have ū and v̄ com-
puted, but the term E1 contains unknown gradients ∇u and ∇v. In order to estimate
it, we notice first that E1(u − ū, v − v̄) ≡ a(u − ū, v − v̄). Further, the following
relation obviously holds for any positive α:

2E1(u− ū, v − v̄) = a
(
α(u− ū) +

1

α
(v − v̄), α(u− ū) +

1

α
(v − v̄)

)

− α2a(u− ū, u− ū)− 1

α2
a(v − v̄, v − v̄). (26)

The last two terms in the above identity present the errors in the energy norm for
main and adjoint problems. Thus, we can immediately use the two-sided estimates
from Section 3, written in somewhat simplified form:

Mª ≤ a(u− ū, u− ū) ≤ M⊕, Mª
ad ≤ a(v − v̄, v − v̄) ≤ M⊕

ad,
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where subindex “ad” means that the corresponding estimate is obtained for the
adjoint problem.

As far it concerns the first term in the right-hand side of (26), we observe that

a
(
α(u− ū) +

1

α
(v − v̄), α(u− ū) +

1

α
(v − v̄)

)
=

= a
((

αu +
1

α
v
)− (

αū +
1

α
v̄
)
,
(
αu +

1

α
v
)−(

αū +
1

α
v̄
))

.

The function αu + 1
α
v can be perceived as the solution of the following problem

(called as the mixed problem in what follows): Find uα ∈ u0 + H1
ΓD

(Ω) such that

∫

Ω

A∇uα · ∇w dx +

∫

Ω

cuαw dx = αF (w) +
1

α
`(w) ∀w ∈ H1

ΓD
(Ω),

which is uniquely solvable due to the fact that αF (w) + 1
α
`(w) is, obviously, also

linear bounded functional.
The function αū + 1

α
v̄ ∈ H1

ΓD
(Ω) can be considered as an approximation of uα,

and we can again apply the techniques of Section 3 in order to obtain the following
two-sided estimates (writen again in simplified form)

Mª
mix ≤ a

(
α(u− ū) +

1

α
(v − v̄), α(u− ū) +

1

α
(v − v̄)

)
≤ M⊕

mix,

where subindex “mix” means that the estimates are obtained for the mixed problem.
Further, we immediately observe that

1

2

(
Mª

mix − α2M⊕ − 1

α2
M⊕

ad

)
≤ E1(u− ū, v − v̄),

and

E1(u− ū, v − v̄) ≤ 1

2

(
M⊕

mix − α2Mª − 1

α2
Mª

ad

)
.

The above considerations can be summarized as follows.

Proposition 4.2 For the error in terms of linear functional `(u − ū) we have the
following upper estimate

`(u− ū) ≤ E0(ū, v̄) +
1

2

(
M⊕

mix − α2Mª − 1

α2
Mª

ad

)
,

and the following lower estimate

`(u− ū) ≥ E0(ū, v̄) +
1

2

(
Mª

mix − α2M⊕ − 1

α2
M⊕

ad

)
,

where the directly computable term E0(ū, v̄) is defined in (25).

Remark 4.1For practical realisations of the above technologies, see e.g. [8, 9, 21, 22].
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BENCHMARK CALCULATIONS OF THE VARIABLE-DENSITY
FLOW IN POROUS MEDIA∗

Milan Hokr

1. Introduction

Variable-density (or density-driven, density-dependent) porous media flow prob-
lem is a coupled problem of water flow and solute transport: the water velocity as
a result of the flow problem is a parameter in the solute transport problem (standard
case) and the solution density as a parameter in the flow problem is dependent on
concentration, a result of the transport problem (specific for variable-density flow) [1].

Several standard benchmark problems are used for tests of numerical schemes and
simulation codes [2, 1]; they are mostly derived from real-world problems of seawater
intrusion and salt deposits. We propose a new benchmark problem, with a config-
uration derived from a case-study of groundwater flow and contaminant transport
in the former uranium leaching site Stráž pod Ralskem in the north of the Czech
Republic. The improvement is in parametrization of the intensity of the density
coupling, allowing to study the efficiency of numerical schemes in dependence on
physical parameters and also to find the limits for using simpler numerical schemes
for the variable-density flow problem.

2. Governing equations

The groundwater porous media flow with the Boussinesque approximation [2] is
governed by the Darcy’s law and the mass-balance (continuity) equation

u = (K(∇h + %r∇z)), κ
∂h

∂t
−∇ · u = q , (1)

where h is the pressure head, %r is the relative solution density (with respect to the
fresh water density), u is the Darcy velocity, q is the source/sink rate, K is the
hydraulic conductivity tensor, κ is the storativity coefficient, and z is the vertical
coordinate. The solute transport is governed by the advection-diffusion equation

∂ (nc)

∂t
+∇ · (uc)−∇ · (nD∇c) = qc0 , (2)

∗This work was supported with the subvention from the Grant Agency of the Czech Republic,
project code 102/05/P284.

104



where c is the solute concentration, c0 is a concentration in the source/sink, D is the
hydrodynamic dispersion tensor [2], and n is the porosity.

The flow and transport equations are coupled through the Darcy velocity u =
K(∇h + %r∇z) and through the relative density, which is a function of the concen-
tration, in the simplest case %r(c) = 1 + c/%0, where %0 is the fresh water density.

3. Numerical schemes

We use two schemes (MHFEM and CVFEM) denoted by the name of the method
used for the flow problem. In both schemes, the advective transport problem is solved
by principally same upwind finite volumes (the only difference is the position of the
control volume – primal or dual mesh, see below). The hydrodynamic dispersion
term is not evaluated in neither of the schemes. The main motivation for the choice
of these numerical methods is the consistent discrete representation of velocity in
both the flow and transport schemes, preserving the local mass balance. Both the
methods use a discretization with trilateral prisms, which allow to use simpler mesh
topology with the horizontal triangulation and the prisms ordered to layers and
columns.

We use the computer codes (different for each method) developed before for
general groundwater problems, with the variable-density term recently added. The
codes have been successfully tested in several model and real-world problems.

3.1. Mixed-hybrid finite-element scheme

The MHFEM scheme is based on the weak formulation of the system of equa-
tions (1) on a system of elements e ∈ Eh with the additional constraint condition
of mass balance expressed by Lagrange multipliers [5]. Thus, there are three un-
known functions approximated with the following discrete spaces: the pressure head
h by piecewise constant functions (in elements), the Lagrange multipliers (physically
“pressure on inter-element interfaces”) by piecewise constant functions on sides, and
the velocity u by piecewise linear vector functions (lowest-order Raviart-Thomas
space). The exact formulation for the specific case of trilateral prismatic elements is
given in [5].

The approximation of the variable-density term results directly in the right-hand
side of the weak formulation of the first equation of (1), i.e.

∑
e∈Eh

{(Aue, ve)0,e − (pe,∇ · ve)0,e + 〈λe,νe · ve〉∂e∩Γh
} =

∑
e∈Eh

{〈pD, νe · ve〉∂e∩∂ΩD
+ 〈%rz, v

e · νe〉∂e − (%rz,∇ · ve)0,e}, (3)

where A = K−1, v are test functions from the same Raviart-Thomas space as u,
ν is the outward normal vector, (·, ·)0,e and 〈·, ·〉∂e are the L2 scalar products on
the element volume and the element boundary respectively, ∂ΩD is the Dirichlet

105



boundary, and pD is the boundary value of p. In the discrete form, the last two
terms on the right-hand side are evaluated as a difference between the z coordinates
of the mass centre of the element and the mass centre of the particular side. The
time discretisation is implicit Euler, but in the calculations below we use a sequence
of steady states with variable parameters, which corresponds to a very large value of
the storativity κ.

The finite volume scheme for the transport problem is described in [3]; the cells
are geometrically identical with the elements of MHFEM flow problem solution, we
use the cell-centred approximation, the upwind weighting of the advective flux, and
the explicit time discretisation. The MHFEM discrete unknowns of the velocity
approximation are the fluxes through element sides, conservative with respect to the
element volumes, which are directly the input value for the discrete advection term.

3.2. Control-volume finite-element scheme

The CVFEM scheme is based on a combination of two ideas: understanding the
basic piecewise linear finite element solution with the triangular mesh as a finite
volume scheme on the dual mesh (control volumes around the mesh nodes) and
combining the FE scheme for 2D horizontal triangulation with the finite differences
for the vertical discretization. This technique including the variable-density term in
a mass-balance form is derived in [4].

The weak formulation, semidiscrete in the vertical direction, for a layer k is

(Kxy∇xyhk,∇xyφk)Ωk
−

(
1

∆zk

[
Kz

k+ 1
2

hk+1 − hk

∆zk+ 1
2

−Kz
k− 1

2

hk − hk−1

∆zk− 1
2

]
, φk

)

Ωk

= (qk, φk)Ωk
,

(4)
where Kxy and Kz are components of K in the x, y directions and z direction respec-
tively, ∇xy is the ∇ operator in the xy direction, ∆zk+ 1

2
is the vertical discretisation

step between the layers k and k + 1, (·, ·)Ωk
is the L2 scalar product in the layer k

(horizontal projection of problem domain Ω), φk is a piecewise linear test function.
The pressures and the concentrations are evaluated in the mesh nodes, the ve-

locity is represented as fluxes along mesh edges, the flux between nodes i and j is
uij = Aij(hi − hj), where A is the global stifness matrix, and hi, hj are the nodal
values of pressure head.

3.3. Variable-density coupling

The model uses the explicit time stepping, i.e. in each time step, the flow problem
is solved with the density distribution from the previous time step and then the
transport problem is solved with the updated velocity field. This approach requires
a small time step. The benchmark below is sensitive to change of the coupling
time step in the beginning of the time interval, but the sufficient time step is still
10 times larger than the stability condition given by the upwind scheme for the solute
transport. In the calculations, the time step is 40 days for the transport scheme and
360 days for the coupling iterations.
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Fig. 1: Configuration of the benchmark problem, position of boundary and initial condi-
tions.

Layer code Kx, Ky Kz n dz c
(10)
ini c

(30)
ini c

(50)
ini

m/day m/day 1 m g/l g/l g/l
TT4 – TT1 6 – 10 6 – 10 0.07 10–15 0 0 0
TM2 – TM1 0.4 0.1 0.07 12.5 0 0 0
LS2 – LS1 1e-4 4e-4 0.05 30 0 0 0
CF4 – CF3 0.5 0.25 0.08 12.5 10 25 40
CF2 0.05 0.025 0.04 7.5 10 20 30
CF1 0.5 0.25 0.08 7.5 10 25 40
CR2 – CR1 2 – 4 2 0.1 8–12 10 30 50

Tab. 1: Discretization and material parameters in the benchmark: horizontal and vertical
conductivity, porosity, layer thickness, and three variants of initial concentration. Some
lines represent multiple layers with slightly variable parameters.

4. Benchmark structure

4.1. Discretization and material parameters

The benchmark problem is built as geometrically simple domain representing the
most of the character of the real groundwater system in Stráž pod Ralskem. The
domain is 2000 m long (left–right), 190 m high and 40m wide (front–back), discretized
with prisms coupled in hexahedrons, each of the size 40 × 40 × dz (the thickness
varies). The vertical discretisation is by 14 layers with thickness dz according to the
real geological structure (Fig. 1, Tab. 1). We use the codes originated from the rock
names: “T” the top permeable part (aquifer), “L” the semi-isolator, “C” the bottom
part (aquifer).

4.2. Boundary conditions

The boundary conditions are Dirichlet (prescribed pressure head h) and homo-
geneous Neumann (zero flux u · ν = 0) for the flow problem (Fig. 1). The pressure
head difference between the bottom and the top part is a parameter dh, representing
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the intensity of the hydraulic force in comparison with the gravity force on denser
liquid (larger dh means less density-dependent coupling), dh = 1 m, 3m, and 10m.
For the solute advection problem, zero Dirichlet at the inflow boundary is prescribed
(fresh water c = 0), no boundary condition is prescribed at the outflow boundary,
and the position of zero flux boundaries is the same as for the flow problem.

4.3. Initial conditions

The initial distribution of head and velocity (flow problem) is given by the bound-
ary conditions above (constant-density steady state). As the initial distribution of
concentration (transport problem), we use a simple representation of a contamination
plum in the bottom aquifer, with zero concentration elsewhere (Fig. 1).

The contamination plum is defined by constant concentration for each layer, with
horizontal dimension (length) 280 m and position 200m from the left, with vertical
inhomogeneity given by field measurements. We use three variants (referred by the
most bottom value) in Tab.1. They are the second parameter of density-coupling
(the higher is the concentration, the more is the density influence).

5. Results

We observe the behaviour of the system in the time interval of 200 years. During
this interval the contamination in the most permeable layers leaves the domain, but
the slowly moving contamination in the less permeable layers moves to the central
and the right part of the domain and the transfer upwards is well visible (Fig. 2).

The objective of the numerical benchmark study is to compare two different ap-
proximations (equations coupled/uncoupled), two different numerical schemes, and
mesh refinement. The results are expressed by integral values of concentration over
each layer of the discretization (total mass in a layer). This technique is kept from
previous use of the benchmark for hydrogeological parametric studies.

5.1. Basic study of parameter influence

Table 2 compares the total transfer to the top aquifer for the combinations of the
three values of the piezometric head difference dh and the three variants of initial
contamination, calculated with MHFEM scheme. For each combination, we also
compare the variable-density and the constant-density model formulation.

For the head difference dh = 1 m, the hydraulic force is small and the gravity force
and the density-driven process dominate, so much that the mass transfer upwards
partly decreases with rising concentration. For the head difference dh = 3 m and
dh = 10 m, the hydraulic force becomes more significant but the density effect keeps
important. The smallest influence and the weakest coupling is as expected for dh =
10 m and c = 10 g/l. The basic analysis in Tab. 2 documents the necessity of the
variable-density model and a good sensitivity on the density approximation required
for variable-density benchmarks.
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Initial dh = 1 dh = 3 dh = 10
conc. var.dens. const.dens. var.dens. const.dens. var.dens. const.dens.

g/l ton ton ton ton ton ton
10 0.165 0.568 5.07 11.897 67.883 100.643
30 0.105 1.419 6.181 29.578 116.717 251.165
50 0.117 2.269 7.058 47.26 156.037 401.688

Tab. 2: Evaluation of the parameter influence and comparison of the variable-density
versus the constant-density approximation, by means of a single value of the total mass
transfer to the upper aquifer (subdomain).

dh = 1 c = 50 dh = 3 c = 30 dh = 10 c = 10
orig ref1 ref2 orig ref1 ref2 orig ref1 ref2

top 0.828 0.028 1E-04 6.645 1.091 0.184 75.55 66.72 48.11
isolator 33.46 14.13 3.579 62.04 31.01 13.58 105.2 138.7 88.78
bottom 167.1 141.2 57.82 120.4 125.1 56.9 24.58 52.45 54.23

Tab. 3: Study of the mesh refinement in z direction, results expressed by three values of
the total mass in the bottom, middle, and top part of the domain.

5.2. Mesh refinement

We narrow the study to the following three combinations representing the weak-
est, medium and the strongest density coupling respectively: (a) dh = 10 m, c =
10 g/l, (b) dh = 3 m, c = 30 g/l, and (c) dh = 1 m, c = 50 g/l. The mesh is refined in
the z direction, i.e. each layer in Tab. 1 is divided into two equal.

The results of CVFEM calculation1 expressed as mass sums in each of the three
parts are in Tab. 3. The density influence is similar in all the original and the refined
meshes, but there is no visible convergence. Generally, finer mesh lead to smaller
transfer to upper layers, which can be caused by smaller numerical diffusion. On the
other hand, the overall trend visualised by concentration field is similar for all dis-
cretizations (Fig. 2). The difficulty for comparing the MHFEM and CVFEM schemes
is in the different position of unknowns with respect to the material parameters in
the layers. As examples of secondary importance, the three corresponding values in
Tabs. 2 and 3 are less different than with respect to the mesh refinement.

6. Conclusion

The results confirm the great enough sensitivity of the defined benchmark on the
variable-density coupling. Moreover, the chosen parameters well cover the interval
between the weak and strong coupling.

1The refinements for MHFEM were not evaluated, because the code uses external solver of the
system of linear algebraic equations, which leads to very slow calculation in the iterations. We
currently work on a more efficient implementation.
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Fig. 2: Isolines of concentration in the final time 200 years for the smallest (dh = 10m,
c = 10 g/l, left) and the largest (dh = 1m, c = 50 g/l, right) density influence. The isoline
values are (from outside) 0.1, 0.5, 1, and 2 g/l.

On the other hand, the problem configuration and the used schemes do not
allow to obtain mesh independent results. The reason can be that the influence of
inhomogeneity inside the three subdomains and the changes of the numerical diffusion
related to the mesh refinements amplify each other. The use of integral values also
complicates the interpretation: in the bottom subdomain, there is a strong influence
by escape of the mass from the domain (different in each layer of the mesh) and in the
top subdomain, the value is inappropriately sensitive to the numerical approximation
because it is a very small fraction of the original mass (large error relative to the
local value, but smaller relative to the maximum or average value in the domain),
e.g. in the case of the top layer value for dh = 1 m and c = 50 g/l).

Here the solutions and evaluation criteria sufficient for the hydrogeological studies
are not enough accurate for more exact statements on the numerical properties. We
assume that an identical configuration without the internal material inhomogeneity
and finer meshes in both the vertical and the horizontal directions, planned for future
work, would give a better understanding of the solution behaviour.
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REMARK ON COMPUTING THE ANALYTIC SVD∗

Dáša Janovská, Vladimı́r Janovský

Abstract

A new technique for computing Analytic SVD is proposed. The idea is to follow
branches for just one selected singular value and the corresponding left/right singular
vector.

1. Introduction

A singular value decomposition (SVD) of a real matrix A ∈ Rm×n, m ≥ n, is
a factorization A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices
and Σ = diag(s1, . . . , sn) ∈ Rm×n. The values si, i = 1, . . . , n, are called singular
values. They may be defined to be nonnegative and to be arranged in nonincreasing
order.

Let A depend smoothly on a parameter t ∈ R, t ∈ [a, b]. The aim is to construct
a path of SVD’s

A(t) = U(t)Σ(t)V (t)T , (1)

where U(t), Σ(t) and V (t) depend smoothly on t ∈ [a, b]. If A is a real analytic
matrix function on [a, b], then there exists Analytic Singular Value Decomposition
(ASVD), see [1]: There exists a factorization (1) that interpolates classical SVD
defined at t = a, i.e.

• the factors U(t), V (t), and Σ(t) are real analytic on [a, b];

• for each t ∈ [a, b], both U(t) ∈ Rm×m and V (t) ∈ Rn×n are orthogonal matrices
and Σ(t) = diag(s1(t), . . . , sn(t)) ∈ Rm×n is a diagonal matrix;

• at t = a, the matrices U(a), Σ(a) and V (a) are the factors of the classical SVD
of the matrix A(a).

Diagonal entries si(t) ∈ R of Σ(t) are called singular values. Due to the require-
ment of smoothness, singular values may be negative and also their ordering may be
arbitrary. Under certain assumptions, ASVD may be uniquely determined by the
factors at t = a. For a theoretical background, see [9]. As far as the computation is
concerned, an incremental technique is proposed in [1]: Given a point on the path,

∗The research of both authors was partially supported by the Grant Agency of the Czech Re-
public (grant No. 201/06/0356). The first and the second author acknowledge financial support
by the research projects MSM 6046137306 and MSM 0021620839, respectively, of The Ministry of
Education, Youth and Sports, Czech Republic.
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one computes a classical SVD for a neighboring parameter value. Next, one com-
putes permutation matrices which link the classical SVD to the next point on the
path. The procedure is approximative with a local error of order O(h2), where h is
the step size.

An alternative technique for computing ASVD is presented in [12]: A non-
autonomous vector field H : R × RN → RN of a huge dimension N = n + n2 + m2

can be constructed in such a way that the solution of the initial value problem for
the system x′ = H(t, x) is linked to the path of ASVD. Moreover, [12] contributes
to the analysis of non-generic points, see [1], of the ASVD path. These points could
be, in fact, interpreted as singularities of the vector field H. In [11], both approaches
are compared.

A continuation algorithm for computing ASVD is presented in [7]. It follows
a path of a few selected singular values and left/right singular vectors. It is aimed to
treat large sparse matrices. The continuation algorithm is of a predictor-corrector
type. The relevant predictor is based on Euler method hence on an ODE solver.
In this respect, there is a link to [12]. Nevertheless, the Newton-type corrector
guarantees the solution with a prescribed precision.

The continuation may get stuck at the points, where a nonsimple singular value
si(t) turns up for a particular parameter t and index i. In [1, 12], such points are
called non-generic points of the path. They are related to the branching of singular
value paths. The code in [7] incorporates extrapolation strategies in order to “jump
over” such a point.

In the present contribution, we will review the continuation proposed in [7], see
Section 2. We suggest and investigate the idea to continue just one singular value
and the corresponding left/right singular vector. Finally, we report on numerical
experiments.

2. Preliminaries

Let us recall the notion of a singular value of a matrix A ∈ Rm×n, m ≥ n:

Definition 2.1 We say that s ∈ R is a singular value of the matrix A if there exist
u ∈ Rm and v ∈ Rn such that

Av − su = 0 , AT u− sv = 0 , ‖u‖ = ‖v‖ = 1 . (2)

The vectors v and u are called the right and the left singular vectors of the matrix A.

Note that s is defined up to its sign: if the triplet (s, u, v) satisfies (2) then at least
three more triplets

(s,−u,−v) , (−s,−u, v) , (−s, u,−v) ,

can be interpreted as singular values, left and right singular vectors of A.
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Definition 2.2 For a given s ∈ R, let us set

M(s) ≡
( −sIm A

AT −sIn

)
,

where Im ∈ Rm×m and In ∈ Rn×n are identities.

Definition 2.3 We say that s ∈ R is a simple singular value of a matrix A if there
exist u ∈ Rm and v ∈ Rn such that

(s, u, v) , (s,−u,−v) , (−s,−u, v) , (−s, u,−v)

are the only solutions to (2). A singular value s which is not a simple singular value
is called nonsimple singular value.

Remark 2.1 Let s 6= 0.

1. s is a simple singular value of A if and only if dim KerM(s) = 1.

2. s is a simple singular value of A if and only if s2 is a simple eigenvalue of
AT A. In particular, v ∈ Rn and u ∈ Rm,

AT Av = s2v , ‖v‖ = 1 , u =
1

s
Av ,

are the relevant right and left singular vectors of A.

Remark 2.2 s = 0 is a simple singular value of A if and only if m = n and
dim KerA = 1.

Remark 2.3 Let si, sj, si 6= sj, be simple singular values of A. Then si 6= ±sj.

Let us recall the idea of [7]: The branches of selected singular values and corre-
sponding left/right singular vectors si(t), Ui(t) ∈ Rm, Vi(t) ∈ Rn are considered i.e.,

A(t)Vi(t) = si(t)Ui(t) , A(t)T Ui(t) = si(t)Vi(t) , (3)

Ui(t)
T Ui(t) = Vi(t)

T Vi(t) = 1 (4)

for t ∈ [a, b]. The natural orthogonality conditions Ui(t)
T Uj(t) = Vi(t)

T Vj(t) = 0,
i 6= j, t ∈ [a, b], are added. Given p, p ≤ n, the selected singular values S(t) =
(s1(t), . . . , sp(t)) ∈ Rp, and the corresponding left/right singular vectors U(t) =
[U1(t), . . . , Up(t)] ∈ Rm×p, V (t) = [V1(t), . . . , Vp(t)] ∈ Rn×p are followed as t ∈ [a, b].

In the operator setting, let

F : R× Rp × Rm×p × Rn×p → Rm×p × Rn×p × Rp×p × Rp×p (5)

be defined as
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F (t,X) ≡ (
A(t)V − UΣ, AT (t)U − V Σ, UT U − I, V T V − I

)
, (6)

where X ≡ (S, U, V ) ∈ Rp×Rm×p×Rn×p, Σ = diag(S) and I ∈ Rp×p is the identity.
Under certain assumptions, the set of overdetermined nonlinear equations

F (t,X) = 0 (7)

implicitly defines a curve in R×RN , where RN , N = p(1+n+m), and Rp×Rm×p×
Rn×p are isomorphic. The image of F , namely Rm×p×Rn×p×Rp×p×Rp×p, and RM ,
M = p(m + n + 2p), are isomorphic.

The curve (7) can be parameterized by t, i.e. t 7→ X(t) = (S(t), U(t), V (t))
so that F (t,X(t)) = 0 as t ∈ [a, b]. Given a solution X(t) at t = a, the curve is
initialized. For this purpose, we may select p singular values and left/right singular
vectors computed via the classical SVD of the matrix A(a), see e.g. [4].

In [7], the tangent continuation, see [2], Algorithm 4.25, p. 107, is applied. It is
a predictor-corrector algorithm with an adaptive stepsize control. Let us note that
the sparsity of A(t) as t ∈ [a, b] can be exploited.

3. Continuation of a single singular value

In this section, we will consider the idea of pathfollowing of one singular value and
the corresponding left/right singular vector. We will expect the path to be locally
a branch si(t), Ui(t) ∈ Rm, Vi(t) ∈ Rn satisfying conditions (3)&(4) for t ∈ [a, b].

We consider the i-th branch, 1 ≤ i ≤ m, namely, the branch which is initialized
by si(a), Ui(a) ∈ Rm, Vi(a) ∈ Rn computed by the classical SVD, see [4]. Note
that the SVD algorithm orders all singular values in descending order s1(a) ≥ . . . ≥
si(a) ≥ . . . ≥ sm(a) ≥ 0. We assume that si(a) is simple. For the analysis of this
assumption, see Remark 2.1 and Remark 2.2.

Remark 3.1 Let s 6= 0.

1. If M(s)

(
u
v

)
= 0 then uT u = vT v.

2. If in addition M(s)

(
ũ
ṽ

)
= 0 then uT ũ = vT ṽ.

3. s is a singular value of A if and only if dim KerM(s) ≥ 1.

For M(s), see Definition 2.2.

Note that if si(t) 6= 0 then due to Remark 3.1 one of the scaling conditions (4) is
redundant. It motivates the following
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Definition 3.1 Consider a mapping

f : R× R1+m+n → R1+m+n ,

t ∈ R , x = (s, u, v) ∈ R1 × Rm × Rn 7−→ f(t, x) ∈ R1+m+n ,

where

f(t, x) ≡


−su + A(t)v
AT (t)u− sv
vT v − 1


 . (8)

As an alternative to (8) we will also use

f(t, x) ≡


−su + A(t)v
AT (t)u− sv
uT u + vT v − 2


 (9)

with an equivalent scaling.

The equation

f(t, x) = 0 , x = (s, u, v) , (10)

may locally define a branch x(t) = (s(t), u(t), v(t)) ∈ R1+m+n of singular values s(t)
and left/right singular vectors u(t) and v(t). The branch is initialized at t0 that plays
the role of t(a). It is assumed that there exists x0 ∈ R1+m+n such that f(t0, x0) = 0.
The initial condition x0 = (s0, u0, v0) ∈ R1+m+n plays the role of already computed
SVD-factors si(a) ∈ R1, Ui(a) ∈ Rm and Vi(a) ∈ Rn.

We solve (10) on an open interval J of parameters t such that t0 ∈ J .

Theorem 3.1 Let (t0, x0) ∈ J ×R1+m+n, x0 = (s0, u0, v0) be a root of f(t0, x0) = 0.
Assume that s0 6= 0 is a simple singular value of A(t0).

Then there exists an open subinterval I ⊂ J containing t0 and a unique function
t ∈ I 7−→ x(t) ∈ R1+m+n such that f(t, x(t)) = 0 for all t ∈ I and that x(t0) = x0.
Moreover, if A ∈ Ck(I,Rm×n), k ≥ 1, then x ∈ Ck(I,R1+m+n). If A ∈ Cω(I,Rm×n)
then x ∈ Cω(I,R1+m+n).

Proof Note that the assumptions yield that the partial differential fx(t
0, x0) ∈

R1+m+n × R1+m+n at (t0, x0) is a regular matrix.

Assuming A ∈ Ck(I,Rm×n), k ≥ 1, the statement is a consequence of Implicit
Function Theorem, see e.g. [6]. In case that A ∈ Cω(I,Rm×n), i.e. A is real analytic,
again Implicit Function Theorem holds, see [10]. ♦

In case that s0 = 0 is a simple singular value of A(t0), see Remark 2.2, the analysis
is much more complicated. In the present paper we prefer to announce the result as
a conjecture:
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Conjecture 3.1 Let (t0, x0) ∈ J × R1+m+n, x0 = (s0, u0, v0) be a root of
f(t0, x0) = 0. Assume that s0 = 0 is a simple singular value of A(t0) i.e. m = n and
dim KerA(t0) = 1. Let (u0)T A′(t0)v0 6= 0.

Then there exists an open subinterval I ⊂ J containing t0 and a unique function
t ∈ I 7−→ x(t) ∈ R1+2n such that f(t, x(t)) = 0 for all t ∈ I and x(t0) = x0.
Moreover, if A ∈ Ck(I,Rn×n), k ≥ 1, then x ∈ Ck(I,R1+2n). If A ∈ Cω(I,Rn×n)
then x ∈ Cω(I,R1+2n).

Let us compare:

Remark 3.2 Consider the defining equation (7) for p = 1. It represents an overde-
termined system for (t,X) ∈ R×R1+m+n. In [7], the condition (7) is meant in the
least-squares sense. The compatibility of the solution set to (7), see [2] p. 93 for the
notion, has been checked a posteriori. On the other hand, the formulation via (10)
suggests that the solution set (t, x) to (10) is under certain assumption an implicitly
defined curve in (t, x) ∈ R× R1+m+n.

The practical advantage of (10) is that we can use the ready-made packages for
continuation of an implicitly defined curves. In particular, we implemented a Matlab
toolbox MATCONT, [3].

In Conclusions to [7], we admitted that the continuation of a bunch of p selected
singular values and the relevant left/right singular vectors may get stuck. Note
that the same phenomena was reported as the alternative methods are concerned,
see [1, 12, 11]. In Introduction we noted that the continuation problems are related
to nonsimple singular values on the path (see Definition 2.3). In [1, 12], these points
are called non-generic.

Pathfollowing of the solution set of (10) via MATCONT is very robust. It does
not usually get stuck. On the other hand, one has to be careful when interpreting
the results. In principle, the minimal stepsize MinStepsize should be sufficiently
small.

In [8], the non-generic points of the path are considered. The claim is that
a non-generic point does not persist a sufficiently small perturbation of A(t). In
other words, given an A(t) on a finite interval a ≤ t ≤ b then, “usually”, the set of
non-generic points on the path is empty.

4. Numerical experiments

We consider the same problem as in [7] namely, the homotopy

A(t) = t A2 + (1− t) A1 , t ∈ [0, 1] , (11)

where the matrices

A1 ≡ well1033.mtx , A2 ≡ illc1033.mtx
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are taken over from http://math.nist.gov/MatrixMarket/. Note that A1, A2 ∈
R1033×320 are sparse while A1 and A2 are well and ill-conditioned. The aim is to
continue

• 10 smallest singular values, left/right singular vectors of A(t),

• 10 largest singular values, left/right singular vectors of A(t).

The continuation is initialized at t = 0: The initial decomposition of A1 was com-
puted via SVDS, see MATLAB Function Reference.

The results of continuation are resumed on Figure 1 and Figure 2. The branches
are depicted in turns by solid and dash curves. This should underline that the
branches do not cross each other. The computation complies with Theorem 3.1.
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The zooms of the branches are shown on Figure 3. Each curve is computed as
a sequence of isolated points marked by circles. The adaptive stepsize control refines
the stepsize individually for each branch.

Note that the branches reported in [7] are not computed correctly. They cross
each other occasionally: In the case of a stagnation, the continuation algorithm tries
to jump over a prospective non-generic point on the path. A simple extrapolation
strategy is used to continue. The branching scenario often suggests to follow a wrong
branch. The message is that the branching is not generic.

In [7], the stepsize is always changed simultaneously for all p selected singular
values. Treating each branch individually, see Figure 3, is much more efficient.

As the second example, we consider another homotopy

A(t) = t A3 + (1− t) A4 , t ∈ [−3, 10] , (12)

where the matrices

A3 ≡ cavity01.mtx , A4 ≡ cavity02.mtx

are taken over from http://math.nist.gov/MatrixMarket/. A3, A4 ∈ R317×317 are
sparse square matrices.

The aim is to continue the smallest singular value and the relevant left/right
singular vector over the interval [−3, 10]. The plot of the smallest singular value vs.
t is shown on Figure 4. Note that s(t) changes sign. It illustrates Conjecture 3.1: If
the sign change occurs at t0, the condition (u0)T A′(t0)v0 6= 0 means that s(t) crosses
zero at t0 “transversally”, i.e. s′(t0) 6= 0. It complies with the situation on Figure 4.
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Fig. 4: The smallest singular value s versus parameter t.
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5. Conclusions

In order to perform the Analytic SVD, we suggested to compute separate
branches of singular values and the relevant left/right singular vectors. We can
use any standard software for the pathfollowing of an implicitly defined curve. It
seems, see [8], that the branches do not intersect generically. In other words, the
branching scenario which concerns non-generic points, see [1, 12], does not persist
sufficiently small perturbations of A(t). So far, the claim is not rigorously proved.
Nevertheless, the numerical experience supports the claim.

6. Appendix

We shall comment on Remark 3.1, Remark 2.1 and Remark 2.2. In particu-
lar, Remark 3.1 is based on Lemma 6.1 and Lemma 6.2, Remark 2.1 follows from
Lemma 6.3 and Remark 2.2 is due to Lemma 6.4. Let us prove the Lemmas.

Lemma 6.1 Let s 6= 0, M(s)

(
u
v

)
= 0. Then uT u = vT v.

Proof By definition, we assume

−su + Av = 0 , AT u− sv = 0 .

Multiplying the first equation by uT from the left and the second equation by vT

from the left, we get

uT u = −1

s
uT Av , vT v = −1

s
vT AT u .

Note that vT AT u = (Av)T u = uT Av. Therefore, uT u−vT v = −1

s
(uT Av−uT Av) = 0.

♦

Lemma 6.2 Let s 6= 0, M(s)

(
u
v

)
= 0, M(s)

(
ũ
ṽ

)
= 0. Then uT ũ = vT ṽ.

Proof We assume
−su + Av = 0 , AT u− sv = 0 ,

−sũ + Aṽ = 0 , AT ũ− sṽ = 0 .

Therefore,
ũT (−su + Av) = 0 , ṽT (AT u− sv) = 0 ,

uT (−sũ + Aṽ) = 0 , vT (AT ũ− sṽ) = 0 .

Since s 6= 0,

ũT u = −1

s
ũT Av , ṽT u = −1

s
ṽT AT u = −1

s
(Aṽ)T u
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and

uT ũ = −1

s
uT Aṽ , vT ṽ = −1

s
vT AT ũ = −1

s
(Av)T ũ .

We conclude that

ũT u− vT ṽ = −1

s
ũT Av +

1

s
(Av)T ũ .

Since vT ṽ = ṽT v and (Av)T ũ = ũT Av,

ũT u− ṽT v = 0 .

♦

Lemma 6.3 A triplet s 6= 0, u ∈ Rm and v ∈ Rn satisfies (2) if and only if

AT Av = s2v , u =
1

s
Av , ‖v‖ = 1 , s 6= 0 . (13)

Proof Let s 6= 0, u and v satisfy (2). From the first equation in (2), 0 = Av−su = 0,
we conclude that 0 = AT (Av − su) = AT Av − sAT s = AT Av − s2v since AT u = sv.

Moreover, su = Av, i.e. u =
1

s
Av.

Let s 6= 0, u and v satisfy (13). Then AT u−su = AT (
1

s
Av)−sv =

1

s
AT Av−sv =

sv− sv = 0 and Av− su = Av− s(
1

s
Av) = Av−Av = 0. Finally, uT u = uT (

1

s
Av) =

1

s
uT Av =

1

s
(AT u)T v =

1

s
svT v = 1. ♦

Note that a nonzero simple singular value s can be identified with a nonzero
simple eigenvalue s2 of the matrix AT A, see Lemma 6.3.

Lemma 6.4 s = 0 is a simple singular value of A if and only if m = n and
dim KerA = 1.

Proof Let m = n, dim KerA = 1. As a consequence, dim KerAT = 1. Then there
exist u ∈ Rm and v ∈ Rn such that

Av = 0 , AT u = 0 , ‖u‖ = ‖v‖ = 1 , (14)

i.e. (s = 0, u, v) satisfies (2). Clearly, (s = 0, u, v) and (s = 0,−u,−v) and
(s = 0,−u, v) and (s = 0, u,−v) are the only possibilities to solve (2).

If m > n then dim KerAT ≥ 2 and hence (14) has infinitely many solutions. If
dim KerA ≥ 2, one can also find infinitely many solutions to (14). ♦
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[7] V. Janovský, D. Janovská, K. Tanabe: Computing the analytic singular value de-
composition via a pathfollowing. In: Proceedings of ENUMATH 2005, Springer
Verlag, New York, 2006, 911–918.
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A COMPUTATIONAL COMPARISON OF METHODS
DIMINISHING SPURIOUS OSCILLATIONS IN FINITE ELEMENT

SOLUTIONS OF CONVECTION–DIFFUSION EQUATIONS∗

Volker John, Petr Knobloch

Abstract

This paper presents a review and a computational comparison of various stabiliza-
tion techniques developed to diminish spurious oscillations in finite element solutions
of scalar stationary convection–diffusion equations. All these methods are defined
by enriching the popular SUPG discretization by additional stabilization terms. Al-
though some of the methods can substantially enhance the quality of the discrete
solutions in comparison to the SUPG method, any of the methods can fail in very
simple situations and hence none of the methods can be regarded as reliable. We also
present results obtained using the improved Mizukami–Hughes method which is often
superior to techniques based on the SUPG method.

1. Introduction

During the past three decades, much effort has been devoted to the numerical
solution of the scalar convection–diffusion equation

−ε ∆u + b · ∇u = f in Ω, u = ub on ∂Ω. (1)

Here Ω ⊂ R2 is a bounded domain with a polygonal boundary ∂Ω, ε > 0 is the
constant diffusivity, b ∈ W 1,∞(Ω)2 is a given convective field, f ∈ L2(Ω) is an
outer force, and ub ∈ H1/2(∂Ω) represents the Dirichlet boundary condition. In our
numerical tests also less regular boundary conditions are considered.

Problem (1) describes the stationary distribution of a physical quantity u (e.g.,
temperature or concentration) determined by two basic physical mechanisms, namely
the convection and diffusion. The broad interest in solving problem (1) is also
caused by the fact that it is a simple model problem for convection–diffusion ef-
fects which appear in many more complicated problems arising in applications, e.g.,
in convection–dominated incompressible fluid flow problems which are described by
the Navier–Stokes equations. Despite the apparent simplicity of problem (1), its
numerical solution is by no means easy when convection is strongly dominant (i.e.,
when ε ¿ |b|). In this case, the solution of (1) typically possesses interior and
boundary layers, which often leads to unwanted spurious (nonphysical) oscillations
in the numerical solution.

∗The research of Petr Knobloch is a part of the project MSM 0021620839 financed by MSMT
and it was partly supported by the Grant Agency of Charles University in Prague under the grant
No. 316/2006/B–MAT/MFF.
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In this paper, we concentrate on the solution of (1) using the finite element
method. The simplest finite element discretization of (1) is the classical Galerkin
formulation which, in simple settings, is equivalent to a central finite difference dis-
cretization. Thus, it is not surprising that, in the convection dominated regime, the
Galerkin solution is usually globally polluted by spurious oscillations and hence the
Galerkin discretization is inappropriate.

To enhance the stability and accuracy of the Galerkin discretization of (1) in
the convection dominated case, various stabilization strategies have been developed.
The most popular stabilization technique within the framework of finite element dis-
cretizations of (1) is the streamline upwind/Petrov–Galerkin (SUPG) discretization
proposed by Brooks and Hughes [2], see Section 2. It can be observed that the so-
lutions obtained with the SUPG method possess often spurious oscillations in the
vicinity of layers.

To diminish the oscillations of SUPG solutions, a large class of finite element
methods has been constructed by adding yet additional stabilization terms to the
SUPG discretization of (1). Usually, these terms depend on the element residuals of
the discrete solution and therefore the resulting methods are consistent and hence
higher–order accurate. We shall discuss such stabilization methods in Section 3.
The stabilization terms introduce additional artificial diffusion and often depend on
the unknown discrete solution in a nonlinear way. It is believed that, for a proper
amount of artificial diffusion, we obtain a discrete solution which represents a good
approximation of the solution of (1) and does not contain any spurious oscillations.
Therefore, the design of suitable formulas specifying the artificial diffusion introduced
by the stabilization terms was a subject of an extensive research during the past two
decades.

The main aim of this paper is to present a computational comparison of the
above–mentioned stabilization techniques by means of two standard test problems
whose solutions possess characteristic features of solutions of (1). In addition, we
shall introduce a new simple model problem of the type of (1) for which none of
the above–mentioned stabilization methods gives a satisfactory discrete solution.
This indicates the necessity to seek other ways of approximating the solution to
the convection–diffusion equation (1). We also present results obtained using the
improved Mizukami–Hughes method which is often superior to techniques based on
the SUPG method and which gives good approximations to the solutions of all three
test problems considered in this paper. In the whole paper we confine ourselves to
conforming piecewise linear triangular finite elements.

The plan of the paper is as follows. In the next section, we formulate two dis-
cretizations of the problem (1): the Galerkin discretization and the SUPG method.
In Section 3, we present a review of various additional stabilization terms added to
the SUPG discretization to diminish spurious oscillations at layers. Also, we men-
tion the improved Mizukami–Hughes method. Then the results of our numerical
tests are reported in Section 4. Finally, the paper is closed by Section 5 containing
our conclusions.
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Throughout the paper, we use the standard notations Lp(Ω), W k,p(Ω), Hk(Ω)
= W k,2(Ω), etc. for the usual function spaces. The norm and seminorm in the
Sobolev space Hk(Ω) will be denoted by ‖ · ‖k,Ω and | · |k,Ω, respectively. The inner
product in the space L2(Ω) or L2(Ω)2 will be denoted by (·, ·). For a vector a ∈ R2,
we denote by |a| its Euclidean norm.

2. The Galerkin discretization of (1) and the SUPG method

To define a finite element discretization of (1), we introduce a triangulation Th of
the domain Ω consisting of a finite number of open triangular elements K possessing
the usual compatibility properties. Using this triangulation, we define the finite
element space

Vh = {v ∈ H1
0 (Ω) ; v|K ∈ P1(K) ∀ K ∈ Th} ,

where P1(K) is the space of linear functions on K. Further, we introduce a piecewise
linear function ũbh ∈ H1(Ω) such that ũbh|∂Ω approximates the boundary condi-
tion ub. Then the usual Galerkin finite element discretization of the convection–
diffusion equation (1) reads:

Find uh ∈ H1(Ω) such that uh − ũbh ∈ Vh and

a(uh, vh) = (f, vh) ∀ vh ∈ Vh ,

where

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) .

Since the Galerkin method lacks stability if convection dominates diffusion,
Brooks and Hughes [2] proposed to enrich it by a residual–based stabilization term
yielding the streamline upwind/Petrov–Galerkin (SUPG) method:

Find uh ∈ H1(Ω) such that uh − ũbh ∈ Vh and

a(uh, vh) + (R(uh), τ b · ∇vh) = (f, vh) ∀ vh ∈ Vh , (2)

where τ ∈ L∞(Ω) is a nonnegative stabilization parameter and

R(uh) = b · ∇uh − f

is the residual (note that ∆uh = 0 on any element of the triangulation).
A delicate problem is the choice of the stabilization parameter τ in (2).

Theoretical investigations of the SUPG method (see, e.g., Roos et al. [20]) provide
certain bounds for τ for which the SUPG method is stable and leads to (quasi–)opti-
mal convergence of the discrete solution uh. However, it has been reported many
times that the choice of τ inside these bounds may dramatically influence the accu-
racy of the discrete solution. Therefore, over the last two decades, much research
has also been devoted to the choice of τ and various strategies for the computa-
tion of τ have been proposed, see, e.g., the review in the recent paper by John and
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Knobloch [14]. Let us stress that the definition of τ mostly relies on heuristic argu-
ments and the ‘best’ way of choosing τ for general convection–diffusion problems is
not known. Here we define τ on any element K ∈ Th by the formula

τ |K ≡ τK =
hK

2 |b| ξ(PeK) with PeK =
|b|hK

2 ε
, (3)

where hK is the diameter of K in the direction of the convection b, PeK is the local
Péclet number and ξ is the so–called upwind function defined by ξ(α) = coth α−1/α.
If b|K is not constant, then the parameters hK , PeK and τK are generally functions
of the points x ∈ K. The formula (3) is a generalization of an analogous one–
dimensional formula which guarantees that, for the one–dimensional case of (1) with
constant data, the SUPG solution with continuous piecewise linear finite elements
on a uniform division of an interval Ω is nodally exact, c.f. Christie et al. [9].

3. A short review of stabilization methods based on the SUPG method

The SUPG method produces to a great extent accurate and oscillation–free solu-
tions but it does not preclude spurious oscillations (overshooting and undershooting)
localized in narrow regions along sharp layers. Although these nonphysical oscilla-
tions are usually small in magnitude, they are not permissible in many applications.
An example are chemically reacting flows where it is essential to guarantee that the
concentrations of all species are nonnegative. The small spurious oscillations may
also deteriorate the solution of nonlinear problems, e.g., in two–equations turbulence
models.

The oscillations along sharp layers are caused by the fact that the SUPG method
is neither monotone nor monotonicity preserving (in contrast with the continuous
problem (1)). Therefore, various terms introducing artificial crosswind diffusion in
the neighborhood of layers have been proposed to be added to the SUPG formula-
tion in order to obtain a method which is monotone, at least in some model cases, or
which at least reduces the local oscillations. This procedure is referred to as disconti-
nuity capturing or shock capturing. A detailed review of such methods was recently
published by John and Knobloch [14].

Usually, the additional artificial diffusion is introduced by adding either the term

(ε̃iso∇uh,∇vh) (4)

or the term

(ε̃cd D∇uh,∇vh) with D =





I − b⊗ b

|b|2 if b 6= 0,

0 if b = 0
(5)

to the left–hand side of (2). The former term introduces isotropic artificial diffusion
whereas the latter one adds the artificial diffusion in the crosswind direction only
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(note that D is the projection onto the line orthogonal to b, I being the identity
tensor). A basic problem of all these methods is to find the proper amount of artifi-
cial diffusion which leads to sufficiently small nonphysical oscillations (requiring that
artificial diffusion is not ‘too small’) and to a sufficiently high accuracy (requiring
that artificial diffusion is not ‘too large’). The derivation of formulas for ε̃iso and ε̃cd

is typically based either on a convergence analysis or on investigations of the discrete
maximum principle or (very often) on heuristic arguments. Usually, the parame-
ter ε̃iso or ε̃cd depends on the unknown discrete solution uh and hence the resulting
method is nonlinear.

Many formulas for ε̃iso rely on replacing the convection b in the SUPG weighting
function by another upwind direction. This approach is used, e.g., in the methods
of Hughes et al. [13], Tezduyar and Park [21], Galeão and do Carmo [12], do Carmo
and Galeão [8] and in the modifications of these methods mentioned below. Let
us mention at least the idea of Galeão and do Carmo [12]. They introduced an
approximate streamline direction bh for which the discrete solution uh elementwise
satisfies the equation (1) with b replaced by bh. Minimizing the difference between
b and bh, they found that bh = b− zh with

zh =
R(uh)∇uh

|∇uh|2 .

(Here and in the following it is understood that, if ∇uh = 0 in the denominator, the
respective expression is replaced by zero.) Finally, they replaced the function τ b
in (2) by τ b + σ zh with a nonnegative parameter σ. That leads to the discretiza-
tion (2) with the additional term (4) on the left–hand side, where

ε̃iso = σ
|R(uh)|2
|∇uh|2 . (6)

Based on ideas of Hughes et al. [13], Galeão and do Carmo [12] defined the parame-
ter σ by

σ = max{0, τ(zh)− τ(b)} . (7)

The notation of the type τ(b?) denotes a value computed using the formula (3)
with b replaced by some function b?. Note that b? influences the value of τK(b?) also
through the definition of hK .

Do Carmo and Galeão [8] proposed to simplify (7) to

σ = τ(b) max

{
0,
|b|
|zh| − 1

}
, (8)

which assures that the term (4) is added only if the above–introduced vector bh

satisfies the natural requirement b · bh > 0. It may also be advantageous to set

σ = τ(b) max

{
0,
|b|
|zh| − ζh

}
with ζh = max

{
1,

b · ∇uh

R(uh)

}
, (9)
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which was proposed by Almeida and Silva [1]. Further variants of this approach were
developed by do Carmo and Galeão [8] and do Carmo and Alvarez [6] who proposed
techniques which should suppress the addition of the artificial diffusion in regions
where the solution of (1) is smooth. A finer tuning of the stabilization parameters
was introduced by do Carmo and Alvarez [7]. Let us also mention that, motivated
by assumptions of a rather general error analysis, Knopp et al. [18] suggested to
replace (6), on any element K ∈ Th, by

ε̃iso|K = σ |QK(uh)|2 with QK(uh) =
‖R(uh)‖0,K

SK + ‖uh‖1,K

, (10)

where SK are appropriate positive constants. The stabilization term (4) was also
used by Johnson [15] who proposed to set

ε̃iso|K = max{0, α [diam(K)]ν |R(uh)| − ε} ∀ K ∈ Th (11)

with some constants α and ν ∈ (3/2, 2). He suggested to take ν ∼ 2.
The crosswind artificial diffusion term (5) was first considered by Johnson et

al. [16]. A straightforward generalization of their approach leads to

ε̃cd|K = max{0, |b|h3/2
K − ε} ∀ K ∈ Th . (12)

The value h
3/2
K was motivated by a careful analysis of the numerical crosswind spread

in the discrete problem, i.e., of the maximal distance in which the right–hand side f
significantly influences the discrete solution. The resulting method is linear but
non–consistent and hence it is restricted to finite elements of first order of accuracy.

Codina [10] proposed to define ε̃cd, for any K ∈ Th, by

ε̃cd|K =
1

2
max

{
0, C − 2 ε |∇uh|

diam(K) |b · ∇uh|
}

diam(K)
|R(uh)|
|∇uh| , (13)

where C is a suitable constant, and he recommended to set C ≈ 0.7 for (bi)linear
finite elements. To improve the properties of the resulting method for f 6= 0, John
and Knobloch [14] replaced (13) by

ε̃cd|K =
1

2
max

{
0, C − 2 ε |∇uh|

diam(K) |R(uh)|
}

diam(K)
|R(uh)|
|∇uh| . (14)

If f = 0, it is equivalent to the original method (13). Finally, Knopp et al. [18]
proposed to use (5) with ε̃cd defined, for any K ∈ Th, by

ε̃cd|K =
1

2
max

{
0, C − 2 ε

QK(uh) diam(K)

}
diam(K) QK(uh) , (15)

which leads to a method having properties convenient for theoretical investigations.
The definition of QK(uh) is the same as in (10).
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It is also possible to add both isotropic and crosswind artificial diffusion terms
to the left–hand side of (2) as proposed by Codina and Soto [11]. They set

ε̃iso = max{0, εdc − τ(b) |b|2} , ε̃cd = εdc − ε̃iso ,

where εdc is defined by the formula (14). However, for the test examples considered
in the present paper, this method gave very similar results as (5) with ε̃cd given
by (14) and hence we shall not consider it in the following.

For triangulations consisting of weakly acute triangles, Burman and Ern [3] pro-
posed to use (5) with ε̃cd defined, on any K ∈ Th, by

ε̃cd|K =
τ(b) |b|2 |R(uh)|
|b| |∇uh|+ |R(uh)|

|b| |∇uh|+ |R(uh)|+ tan αK |b| |D∇uh|
|R(uh)|+ tan αK |b| |D∇uh| (16)

(ε̃cd = 0 if one of the denominators vanishes). The parameter αK is equal to π/2−βK

where βK is the largest angle of K. If βK = π/2, it is recommended to set αK =
π/6. To improve the convergence of the nonlinear iterations, we replace |R(uh)| by
|R(uh)|reg with |x|reg ≡ x tanh(x/2). Based on numerical experiments, John and
Knobloch [14] simplified (16) to

ε̃cd|K =
τ(b) |b|2 |R(uh)|
|b| |∇uh|+ |R(uh)| . (17)

In this case, no regularization of the absolute values is applied.
Another stabilization strategy for linear simplicial finite elements was introduced

by Burman and Hansbo [5]. The term to be added to the left–hand side of (2) is
defined by ∑

K∈Th

∫

∂K

ΨK(uh) sign(
∂uh

∂t∂K

)
∂vh

∂t∂K

dσ , (18)

where t∂K is a tangent vector to the boundary ∂K of K,

ΨK(uh) = diam(K) (C1 ε + C2 diam(K)) max
E⊂∂K

| [|nE · ∇uh|]E | , (19)

nE are normal vectors to edges E of K, [|v|]E denotes the jump of a function v
across the edge E and C1, C2 are appropriate constants. Further, Burman and
Ern [4] proposed to use (18) with ΨK(uh) defined by

ΨK(uh)|E = C |b| [diam(K)]2 | [|∇uh|]E | ∀ E ⊂ ∂K (20)

or by
ΨK(uh) = C |R(uh)| , (21)

where C is a suitable constant.
Finally, let us mention the improved Mizukami–Hughes method, originally intro-

duced by Mizukami and Hughes [19] and recently improved by Knobloch [17]. It is
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a method of another type than the methods presented in this section since its deriva-
tion does not start from the SUPG discretization. However, like the SUPG method,
it is a Petrov–Galerkin method. The weighting functions generally depend on the
unknown discrete solution and hence the method is nonlinear. The advantage of the
Mizukami–Hughes method is that the discrete solution always satisfies the discrete
maximum principle and is usually rather accurate. Drawbacks of the method are
that it is defined for conforming linear triangular finite elements only and that it
is not clear how to generalize the Mizukami–Hughes method to more complicated
convection–diffusion problems than presented in this paper.

4. Numerical results

In this section, we shall present numerical results obtained using the methods
from Sections 2 and 3 for the following three test problems:

Example 1. Solution with parabolic and exponential boundary layers.
We consider the convection–diffusion equation (1) in Ω = (0, 1)2 with ε = 10−8,
b = (1, 0)T , f = 1 and ub = 0. The solution u(x, y) of this problem, see Figure 1,
possesses an exponential boundary layer at x = 1 and parabolic boundary layers at
y = 0 and y = 1. In the interior grid points, the solution u(x, y) is very close to x.
This example has been used, e.g., in [19].

Example 2. Solution with interior layer and exponential boundary
layers. We consider the convection–diffusion equation (1) in Ω = (0, 1)2 with ε =
10−8, b = (cos(−π/3), sin(−π/3))T , f = 0 and

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,
1 else.

The solution, see Figure 3, possesses an interior layer in the direction of the con-
vection starting at (0, 0.7). On the boundary x = 1 and on the right part of the
boundary y = 0, exponential layers are developed. This example has been used, e.g.,
in [13].

Example 3. Solution with two interior layers. We consider the convection–
diffusion equation (1) in Ω = (0, 1)2 with ε = 10−8, b = (1, 0)T , ub = 0 and

f(x, y) =

{
16 (1− 2 x) for (x, y) ∈ [0.25, 0.75]2,
0 else.

The solution, see Figure 5, possesses two interior layers layer at (0.25, 0.75)×{0.25}
and (0.25, 0.75) × {0.75}. In (0.25, 0.75)2, the solution u(x, y) is very close to the
quadratic function (4 x− 1)(3− 4 x). This example has not been published before.

All the numerical results discussed in this section were computed on uniform
triangulations Th of Ω of the type depicted in Fig. 7, which consist of 2(N × N)
equal right–angled isosceles triangles (N = 5 in Fig. 7). We used either N = 20
or N = 64. Figs. 2, 4 and 6 show the SUPG solutions for Examples 1, 2 and 3,
respectively. Although the formula (3) for the stabilization parameter τ can be
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regarded as optimal in all three cases, we observe significant spurious oscillations in
layer regions.

Denoting

Ω1 = {(x, y) ∈ Ω ; x ≤ 0.5, y ≥ 0.1} , Ω2 = {(x, y) ∈ Ω ; x ≥ 0.7} ,

we introduce the following measures of oscillations in the discrete solutions uh of
Examples 1 and 2:
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Fig. 1: Example 1, solution u.
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Fig. 2: Example 1, SUPG, N = 20.
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Fig. 3: Example 2, solution u.
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Fig. 4: Example 2, SUPG, N = 20.
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Fig. 5: Example 3, solution u.
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Fig. 6: Example 3, SUPG, N = 20.
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Fig. 7: Considered type of triangula-
tions.
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Fig. 8: Example1, Cmod,C =0.6,N =20.

oscpara := 10 max
y∈[0,1]

{uh(0.5, y)− uh(0.5, 0.5)} ,

oscint :=


 ∑

(x,y)∈Ω1

(min{0, uh(x, y)})2 + (max{0, uh(x, y)− 1})2




1/2

,

oscexp :=


 ∑

(x,y)∈Ω2

(max{0, uh(x, y)− 1})2




1/2

.

The measure oscpara characterizes the oscillations of uh in the parabolic boundary
layer regions of Example 1 whereas oscint and oscexp measure the oscillations of uh

in the interior and exponential layer regions of Example 2. The summations are
performed over the nodes (x, y) of the mesh. Fig. 9 shows the values of these measures
for most of the methods discussed in the previous section and we see that there are
significant differences between the size of the oscillations. For the six best methods
the results are also shown in Fig. 10 which suggests that the best methods are the
improved Mizukami–Hughes method and the crosswind artificial diffusion method
defined by (5) with (12).

However, a suppression of oscillations does not imply that the respective discrete
solution uh is a good approximation of u since the layers can be smeared considerably.
Therefore, we also define the following measures:

smearpara := max
y∈[1/N,1−1/N ]

{uh(0.5, 0.5)− uh(0.5, y)} , smearint := x2 − x1 ,

smearexp :=
1

10


 ∑

(x,y)∈Ω2

(min{0, uh(x, y)− 1})2




1/2

.

The measure smearpara characterizes the smearing of the parabolic boundary layer
in Example 1 whereas smearint and smearexp measure the smearing of the interior
and exponential layers in Example 2. In the definition of smearint, the value x1 is the
x–coordinate of the first point on the cut line (x, 0.25) with uh(x1, 0.25) ≥ 0.1 and x2
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Fig. 9: Measures of oscillations in discrete solutions of Examples 1 and 2 for N = 64
and various discretizations. Methods adding isotropic artificial diffusion (4): TP1, TP2
- [21], KLR1 - (10), (7) with SK = 1, HMM - [13], J - (11) with α = 0.3 and ν = 2,
AS - (6), (9), CG - (6), (8), GC - (6), (7), CA - [6]. Methods adding crosswind artificial
diffusion (5): KLR2 - (15) with C = 0.6 and SK = 1, C - (13) with C = 0.6, Cmod - (14)
with C = 0.6, JSW - (12), BEmod - (17), BE1 - (16). Edge stabilizations (18): BE2 - (21)
with C = 5 · 10−5, BH - (19) with C1 = 0.5 and C2 = 0.01, BE3 - (20) with C = 0.05.
IMH - improved Mizukami–Hughes method [17].
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Fig. 10: Measures of oscillations in dis-
crete solutions of Examples 1 and 2 for
IMH, Cmod, AS, CG, JSW and BEmod.
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Fig. 11: Measures of smearing in dis-
crete solutions of Examples 1 and 2 for
IMH, Cmod, AS, CG, JSW and BEmod.
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is the x–coordinate of the first point with uh(x2, 0.25) ≥ 0.9. The summation is again
performed over the nodes (x, y) of the mesh. The results in Fig. 11 show that the
method JSW leads to a considerable smearing of the layers and that the improved
Mizukami–Hughes methods does not smear boundary layers for Examples 1 and 2.
The remaining four methods (Cmod, AS, CG and BEmod) seem to be comparable.

The above results and many other numerical tests we performed indicate that
the best methods are the improved Mizukami–Hughes method [17], the isotropic
artificial diffusion methods by do Carmo and Galeão [8] given by (4), (6), (8) and
by Almeida and Silva [1] given by (4), (6), (9) and the modified crosswind artificial
diffusion methods by Codina [10] given by (5), (14) and by Burman and Ern [3]
given by (5), (17). For Example 1, the improved Mizukami–Hughes method gives
a nodally exact discrete solution and the remaining four methods give comparable
discrete solutions, one of which is depicted in Fig. 8. For Example 2, the discrete
solutions obtained using the improved Mizukami–Hughes method and the method
by do Carmo and Galeão [8] (denoted by CG) are depicted in Figs. 12 and 13,
respectively. For the methods Cmod, AS and BEmod, the discrete solutions are
similar as in Fig. 13. Thus, we see that the methods IMH, Cmod, AS, CG and
BEmod are able to substantially improve the quality of the discrete solution in
comparison to the SUPG method.

Unfortunately, this is not always the case. We observed that often also the meth-
ods Cmod, AS, CG and BEmod may produce results with spurious oscillations. This
may also happen for Example 2 if a triangulation similar as in Fig. 7 but with differ-
ent numbers of vertices in x– and y–directions is used. But also for a triangulation
of the type from Fig. 7, the methods Cmod, AS, CG and BEmod may give a wrong
solution. This is the case for Example 3 as Figs. 14 and 15 show. We see that
the oscillations along the interior layers disappeared but the discrete solution is not
correct in a region where it should vanish. We observed this phenomenon for all the
SUPG based methods discussed in Section 3. Fig. 16 shows an approximation of u
obtained using the improved Mizukami–Hughes method which is much better than
for the other four methods, however not perfect. Moreover, in contrast with these
methods, the IMH solution improves if the mesh is refined.

Let us demonstrate that the phenomenon shown in Figs. 14 and 15 has to be
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Fig. 12: Example 2, IMH, N = 20.
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Fig. 13: Example 2, CG, N = 20.

133



 0  0.25  0.5  0.75  1  0
 0.25

 0.5
 0.75

 1
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Fig. 14: Example 3, CG, N = 20.
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Fig. 15: As in Fig. 14 (other view).
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Fig. 16: Example 3, IMH, N = 20.
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Fig. 17: Support of a basis function.

expected if the discrete solution should suppress the spurious oscillations present in
the SUPG solution. Thus, let us assume that a solution of the discrete problem
obtained by adding the term (4) or (5) to the left–hand side of (2) does not contain
spurious oscillations and does not smear the inner layers significantly. Then, on any
vertical mesh line intersecting the interval (0.5, 0.75) on the x–axis, we may find
a vertex a ∈ (0.5, 0.75)× (0, 0.25) surrounded by elements K1, . . . , K6 as depicted in
Fig. 17 such that ∇uh ≈ 0 on K4∪K5∪K6 but ∂uh/∂y is positive and nonnegligible
on K2. The elements K1, . . . , K6 make up the support of the standard piecewise
linear basis function equal 1 at a. Using this basis function as vh in the discrete
problem and denoting by ε̃ the artificial diffusion in (4) or (5), it is easy to show that

∂uh

∂x

∣∣∣
K2

≈ 3

h

∂uh

∂y

∣∣∣
K2

(2 ε + ε̃|K2 + ε̃|K3) ,

where h denotes the length of a leg of K2. This means that, on some elements in
the region (0.5, 0.75)× (0, 0.25), the discrete solution has to grow in the x–direction,
which is exactly what is observed in Figs. 14 and 15. A deeper explanation of this
phenomenon will be a subject of our future research.

5. Conclusions

In this paper we presented a review and a computational comparison of var-
ious stabilization techniques based on the SUPG method which have been devel-
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oped to diminish spurious oscillations in finite element solutions of scalar stationary
convection–diffusion equations. We identified the best methods and demonstrated
that they are able to substantially enhance the quality of the discrete solutions in
comparison to the SUPG method. However, we have also shown that these methods
can fail for very simple test problems. An alternative to these methods seems to
be the improved Mizukami–Hughes method which gives good results in all the cases
considered.
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NUMERICAL SOLUTION OF NEWTONIAN FLOW IN BYPASS
AND NON-NEWTONIAN FLOW IN BRANCHING CHANNELS∗

R. Keslerová, K. Kozel, V. Prokop

Abstract

This paper deals with the numerical solution of Newtonian and non-Newtonian
flows. The flows are supposed to be laminar, viscous, incompressible and steady.
The model used for non-Newtonian fluids is a variant of the power-law. Governing
equations in this model are incompressible Navier-Stokes equations. For numerical
solution we could use artificial compressibility method with three stage Runge-Kutta
method and finite volume method in cell centered formulation for discretization of
space derivatives. The following cases of flows are solved: flow through a bypass
connected to main channel in 2D and 3D and non-Newtonian flow through branching
channels in 2D. Some 2D and 3D results that could have an application in the area
of biomedicine are presented.

1. Mathematical model

The motivation for numerical solution of the fluid flow of Newtonian and non-
Newtonian fluids arises in many applications, e.g. in the biomedicine, food industry,
chemistry, glaciology etc. Many common fluids are non-Newtonian: paints, solutions
of various polymers, food products. The main points of non-Newtonian behaviour
are the ability of the fluid to shear thin or shear thicken in shear flows, the presence of
non-zero normal stress differences in shear flows, the ability of the fluid to yield stress,
the ability of the fluid to exhibit relaxation, the ability of the fluid to creep, see [1].
The solution of flows in branching channels and channels with bypass is important
for modelling of blood flow in arteries. The study of blood flow in large and medium
arteries is a very complex task because of the heterogeneous nature of the problem
and the extreme complexity of blood and arterial wall dynamics. Although blood is
actually a non-Newtonian suspension of cells in plasma, it is reasonable to model it
as a Newtonian fluid in vessels greater than approximately 0.5 mm in diameter [2].
The occurring shear rates are in a range where non-Newtonian effects are only in
minor significance to the flow parameters. This type of flow could be described
by conservation laws of mass and momentum (Navier-Stokes equations), where the
influence of exterior forces and heat exchange is not taken into account. In this case
the model of a vessel is a tube with rigid walls. The pulsatile character of blood flow
is not considered as well as the elasticity of arterial walls.

∗This work was sponsored by Research Plan MSM 6840770010 and GA AS CR No. A 100190505.
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First, we consider the Newtonian fluids. The system of 2D Navier-Stokes equa-
tions for Newtonian fluids in dimensionless conservative form has the form:

R̃Wt + Fx + Gy =
R̃

Re
∆W, R̃ = diag‖0, 1, 1‖. (1)

where the Reynolds number defined as Re = dw∗/ν in 2D and Re = dhw
∗/ν in 3D

is an important parameter of the flow. Quantity w∗ is a characteristic velocity (the
speed of upstream flows), ν = η/ρ is the kinematic viscosity, d is a length scale (the
width of the channel), dh = 4S/O is the hydraulic diameter, S is the area section of
the duct and O is the wetted perimeter. In equation (1), W = (p, u, v)T is the vector
of solution, R̃ = diag‖0, 1, 1‖, and F = (u, u2 + p, uv)T , G = (v, uv, v2 + p)T denote
inviscid fluxes, (u, v) is the dimensionless velocity vector (u = u∗/q∞, v = v∗/q∞),
p denotes the dimensionless pressure (p = p∗/ρq2

∞), t is the dimensionless time
(t = t∗q∞/l), and q∞ is defined as a velocity of incoming flow (q∞ = u∗).

In the case of non-Newtonian fluids the power-law fluids are considered. The
dominant difference from the Newtonian behaviour is shear thinning or shear thick-
ening. From variety of power-law fluids we choose the simplest one:

τ(e) = 2ν0|e|re, (2)

where τ is the stress tensor, e = (eij), i, j = 1, 2, is the strain tensor with components
e11 = ux, e12 = e21 = (vx + uy)/2, e22 = vy, |e| denotes the Euclidean norm of the
tensor, ν0 is a positive constant related to the limit of generalized viscosity µg(κ) when
κ → 0, r is a constant of the model. The model captures the shear thinning fluid if
r ∈ (−1, 0), shear thickening fluid if r > 0, and r = 0 corresponds to the Newtonian
fluid. For the non-Newtonian fluids the system of 2D Navier-Stokes equations and the
continuity equation in two dimensional case written in the dimensionless conservative
form reads

R̃Wt + Fx + Gy =
R̃

Re
(Rx + Sy) (3)

where R = (0, g11, g21)
T , S = (0, g12, g22)

T , gij = 2|e|reij, i, j = 1, 2, with compo-
nents of eij defined above. The terms on the right-hand side can be expanded as
follows

(g11)x + (g12)y = 2|e|rxux + |e|ry(uy + vx) + |e|r∆u,
(g21)x + (g22)y = |e|rx(uy + vx) + 2|e|ryvy + |e|r∆v.

(4)

Let us stress that subindices x and y denote partial derivatives with respect to x
and y and that ∆ stands for the 2D Laplacian. At the inlet the Dirichlet boundary
condition for velocity vector (u, v)T is prescribed, at the outlet the pressure value
is given. On the wall the zero Dirichlet boundary conditions for the components of
velocity are used.

2. Numerical model

For further solution of the system of equations (1), the artificial compressibility
method is used. The continuity equation is completed with the term pt/a

2, where
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a2 > 0. The pressure satisfies the artificial equation of state: p = ρ/δ, in which
ρ is the artificial density, δ is the artificial compressibility, that is connected to the
artificial speed of sound by relation a = δ−

1
2 , see [3]. Then system of governing

equations has the form

Wt + Fx + Gy =
R̃

Re
(Rx + Sy) , (5)

where W = (p/a2, u, v)T . System of equations (5) is solved by a three stage Runge-
Kutta method with given steady boundary conditions. At the inlet an extrapolation
of the pressure is used. At the outlet the value of the pressure is prescribed by p = p2,
where p2 is the dimensionless value of the pressure, that is higher then the initial
value of the pressure at the inlet to ensure pressure gradient. On the walls there
are non-permeability and no-slip conditions. The multistage Runge-Kutta method
is stabilized by the artificial viscosity term (Jameson’s type, see [4]):

W n
i,j = W

(0)
i,j

W
(r)
i,j = W

(0)
i,j − αr∆tRW

(r−1)
i,j , r = 1, . . . , m,

W n+1
i,j = W

(m)
i,j , m = 3,

where W n
ij denotes an approximation of W at grid point (xi, xj) and at a time t = tn,

∆t = tn − tn−1 is the time step, and

RW
(r−1)
i,j = R̃W

(r−1)
i,j −DW n

i,j.

The coefficients are α1 = 0.5, α2 = 0.5, α3 = 1.0 and the term DW n
ij is described

below. The numerical method is of the second order in time and space. The form of
residual R̃W n

i,j depends on the method used for the space discretization, which is in
this case the finite volume method in the cell centered formulation:

R̃Wi,j =
1

µij

4∑

k=1

[(
F i

k −
1

Re
F v

k

)
∆yk −

(
Gi

k −
1

Re
Gv

k

)
∆xk

]
, (6)

where F i = F, Gi = G are inviscid fluxes and F v = (0, ux, vx)
T , Gv = (0, uy, vy)

T are
viscous fluxes, the index k corresponds to the side of a finite volume. The artificial
viscosity term DW n

i,j depends in this case on the second derivatives of the pressure
and is used to improve stability of the solution. The dissipative artificial viscosity
term is constructed as follows:
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DW = DxW + DyW,

DxW = di+ 1
2
,j − di− 1

2
,j,

DyW = di,j+ 1
2
− di,j− 1

2
,

di+ 1
2
,j =

hi+ 1
2
,j

∆t
ε
(2)

i+ 1
2
,j
(Wi+1,j −Wi,j),

νi,j =
|pi+1,j − 2pi,j + pi−1,j|
|pi+1,j|+ 2pi,j + |pi−1,j| ,

ε
(2)

i+ 1
2
,j

= κ(2)max(νi+1,j, νi,j),

where κ(2) has to be chosen in order to achieve convergence of the method.

3. Numerical results

In this section we present steady numerical results obtained for the steady flow
with the aid of the above methods. First, numerical results for channels with one
entrance and two exit parts are presented. Figures 2 and 4 show the fluid veloc-
ity distribution for Reynolds number 1500 for non-Newtonian fluid. In Figures 3
and 5 the numerical results for the two-dimensional case (Newtonian fluids) and the
convergence of the residuals of the vector W = (p, u, v)T are shown. The symbol q
stands for the velocity magnitude, i.e. q =

√
u2 + v2. The other figures represent 3D

flow for Re = 500.
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0.870.98
0.80.9510.930.981

0.84
0.0.

0.880.80.90.97

0.58

0.97 0.93
0.65

0.96 0.8
0.57

0.98
0.71

0.91
0.56

0.750.85
0.490.490.520.6

1 0.87
0.47

0.87
0.62

0.93
0.65

0.340.36

0.99
0.730.780.84

0.32

0.98 0.830.85
0.680.68

0.360.42

0.9
0.59

0.470.490.42

0.69
0.42

0.50.5
0.38

0.87
0.39

0.71 0.63
0.39

0.6
0.380.250.290.35

0.720.730.80.88
0.430.4

0.62
0.23

0.420.59
0.98

0.380.51
0.23

0.380.4
0.62

0.85

0.26

0.96

0.420.610.79
0.530.540.65

0.980.86
0.430.6

0.92
0.49

0.90.910.96
0.440.54

0.33
0.66

0.94

0.290.3

0.890.98
0.440.59

0.34
0.7

0.24

0.87 0.66
0.3

0.86
0.39

0.240.270.30.340.43
0.88

0.310.390.57
0.280.230.25

0.48
0.27

0.490.52
0.99

0.420.65
0.280.3

0.95
0.61

0.24

0.860.94
0.53

0.91
0.450.510.53

1

0.490.550.52
0.780.80.82 0.80.830.75 0.77

0.810.93

0.26

0.850.970.97
0.80.830.87

0.250.24

0.860.98

0.280.4

0.910.930.97

0.52
0.84

0.540.62
0.860.99

0.610.68
0.83

0.
350.450.43

0.830.99
0.690.7

0.870.92

0.40.54
0.54

0.7
0.650.460.64

0.62
0.52

0.52
0.560.60.71

0.39
0.5 0.41

0.
35

0.470.520.44
0.72

0.250.260.28

0.
140.20.23

0.19
0.30.26

0.
26

0.310.23

0.04 0.12

0.25

0.24

0.11

0.260.14

0.04 0.04
0.04

0.
23

0.
21

0.
090.02

0.
06

0.
180.2

0.
08

0.11

0.05

0.
060.
10.08

0.03

0.10.080.060.08
0.04

0.06
0.1

0.04

0.03

0.120.
15

0.14

0.10.09
0.13

0.11 0.07

0.14

0.08

0.13

0.
04

0.1

0.14

0.11
0.14

0.060.070.08 0.1
0.11

0.13
0.15

0.05

0.12

0.15

0.120.130.12
0.14

0.11
0.060.07

0.1
0.060.08

0.13

0.080.06 0.05
0.1

0.03

0.080.070.08
0.05

0.07
0.050.050.04

0.03

Re=500,longitudinal section
(center)

0.
040.050.07

0.02

0.
04

0.03

0.05

0.01

0.020.02

0.08

0.02
0.02

0.02

0.08

0.02

0.060.08

0.02

0.07
0.04

0.02

0.080.08
0.050.04

0.07

0.01

0.08
0.05

0.080.09
0.05

0.1
0.05

Re=500,logitudinal section
(wall)

Fig. 7, 8: Isolines of velocity in angular bypass for Re = 500, 3D case in the central plane
xy, 3D case in the xy plane near the wall, details of regions.

Q

1.81
1.61
1.41
1.21
1.01
0.81
0.61
0.41
0.21
0.01

Re=500, main channel

Q
0.46
0.41
0.36
0.31
0.26
0.21
0.16
0.11
0.06
0.01Re=500

Fig. 9, 10: The figure shows behaviour of flow in angular bypass for Re = 500 in the form
of isolines of velocity, x-y-z cross section of the main channel and bypass.

141



References

[1] K.R. Rajagopal: Mechanics of non-Newtonian fluids. In: G.P. Galdi,
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THE USE OF BASIC ITERATIVE METHODS FOR BOUNDING
A SOLUTION OF A SYSTEM OF LINEAR EQUATIONS WITH

AN M-MATRIX AND POSITIVE RIGHT-HAND SIDE

Martin Kocurek

Abstract
This article presents a simple method for bounding a solution of a system of linear

equations Ax = b with an M-matrix and positive right-hand side [1]. Given a suitable
approximation to an exact solution, the bounds are constructed by one step in a basic
iterative method.

1. Motivation

When we use iterative methods for solving sets of linear algebraic equations
Ax = b, we guess an accuracy of the computed solution according to a residual
vector. Unfortunately, small norm of the residual vector doesn’t imply that we are
close to the exact solution. If we could instead construct an upper and lower bound,
we could guess an accuracy of the computed solution better.

2. Basic terms and definitions

Definition 2.1 Let matrices A, B have the same dimension. We say that A ≥ B
if aij ≥ bij holds for every i, j. Matrix A is called nonnegative, if A ≥ O, where
O is the zero matrix.

Definition 2.2 A real square matrix A = (aij)
n
i,j=1 is called M-matrix, if

1. aii > 0, i = 1, . . . , n,

2. aij ≤ 0 for i 6= j, i, j = 1, . . . , n,

3. exists A−1 ≥ 0.

Definition 2.3 Let us split matrix A into two matrices V , W , so that A = V −W .
If matrix V is nonsingular, then V −W is called splitting of matrix A. The splitting
of matrix A is called regular if V is nonsingular with V −1 ≥ 0 and W ≥ 0.

A splitting Ax = (V −W )x = b yields an iterative method

x(k+1) = V −1Wx(k) + V −1b,

which is convergent if and only if the spectral radius satisfies ρ(V −1W ) < 1.
As usual, we split matrix A into D − L − U , where D is the diagonal of A and

L, U are strictly lower and upper triangular parts of A, respectively. The classical
iterative methods are obtained by setting
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• V = I, W = I − A . . . Fixed-point iterations

• V = D, W = L + U . . . Method of Jacobi

• V = D − L, W = U . . . Method of Gauss-Seidel

From now on we consider matrix A to be an M-matrix and the right-hand side to be
positive. The three methods mentioned above can be written as

x(k+1) = Tx(k) + d, T := V −1W, d := V −1b.

Furthermore, for all these methods (for fixed-point iterations aii ≤ 1, i = 1, . . . , n,
is required) V −W is a regular splitting and (see [3], Theorem 3.13)

T ≥ 0, d > 0, ρ(T) < 1.

3. Bounds for the solution

Lemma 3.1 Let x be the exact solution to Ax = b. Let us consider an iterative
process x(k+1) = Tx(k) + d with T ≥ 0 and ρ(T) < 1. If

x(l+1) ≥ x(l) (1)

for some l ∈ N, then

x ≥ x(l+2) ≥ x(l+1). (2)

Similarly, if x(l+1) ≤ x(l) for some l ∈ N, then

x ≤ x(l+2) ≤ x(l+1).

Notice that condition (1) is equivalent to Ax(l) ≤ b, see [3]. Proof of this lemma is
easy and can be found in [1].

If we get an approximation x(k) and a modificating vector v, we will try to find
a vector y(k) = x(k) + δv so that this y(k) has property (1),

y(k+1) = Ty(k) + d ≥ y(k). (3)

Solving this inequality with variable δ we find a set of acceptable parameters δU . In
the same way we find δL by solving the opposite inequality. Then we set the upper
and lower bounds to be in the following form:

x(k) + δLv ≤ x ≤ x(k) + δUv.

Inequalities (3) have the form

δL(I −T)v ≤ r(k) and δU(I −T)v ≥ r(k), where r(k) = d− (I −T)x(k). (4)

144



Sufficient condition for these inequalities to have a solution is (I − T)v > 0, or
equivalently

r(v) < d, (5)

where r(v) = d− (I −T)v. Thus, d− r(v) = (I −T)v and inequalities (4) will be

δL(d− r(v)) ≤ r(k), δU(d− r(v)) ≥ r(k).

Optimal solution, which yields the highest lower bound xL = x(k) + δLv and the
lowest upper bound xU = x(k) + δUv, is (index i denotes i-th component of a vector)

δL = min
i=1,...,n

r
(k)
i

di − r
(v)
i

, δU = max
i=1,...,n

r
(k)
i

di − r
(v)
i

.

Condition (I −T)v > 0 holds for any approximation v = x(k), which has its residual
vector r(k) < d, see (5). Here it is useful to have a positive right-hand side b (and
therefore d > 0). Therefore, if the residual vector of the approximation x(k) is small
enough, we may take v = x(k), r(v) = r(k) and the bounds will be

xU = x(k)(1 + δU), xL = x(k)(1 + δL),

where

δL = min
i=1,...,n

r
(k)
i

di − r
(k)
i

, δU = max
i=1,...,n

r
(k)
i

di − r
(k)
i

.

4. Application to irreducible Markov chains

Let us now consider a system corresponding to an automaton with n states. This
automaton changes its state, switches from one state to another, in certain time
steps. If a probability of switching to another state depends on the current state
only, we call this system Markov Chain. If there exists a connection between every
two states, we call this Markov chain irreducible.

Probability of transition from i-th state to j-th (if the system is in the i-th state)
is denoted by pij. In this manner we construct a transition probability matrix P,
which is stochastic (row sums are equal to 1).

A useful characteristic of Markov chain is its mean first passage times matrix, de-
noted M . Its elements mij are average times between leaving i-th state and reaching
j-th state (it is useful when j-th state is dangerous and means some kind of failure).
It is computed from the following equation, see [4],

M = P (M −MD) + E,

where MD = diag {m11, . . . , mnn} and E = (eij)
n
i,j=1, eij = 1, i, j = 1, . . . , n. If

we write this equation for each column separately, we get a set of linear algebraic
equations

[I − P (I − eie
T
i )]Mi = e,
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where Mi denotes the i-th column of M and e = (1, . . . , 1)T . Matrix of this system
is a diagonally dominant M-matrix and the method described above can be applied
to find bounds for the solution.

If we use the fixed-point iterations, M
(k+1)
i = P (I−eie

T
i )M

(k)
i +e, for solving this

problem with x(0) = e, we get an approximation x(k), which has its residual vector
r(k) < d = e (condition (5)), after k iterations, k ≤ n [1]. Usually it is k ¿ n.

5. Numerical example

We show these bounds in the following example. Let us consider a set of linear
equations with the right-hand side e and matrix ([2], p. 55–56)

A =




1 -1 0 0 0 0 0 0 0 0
0 1 -1/3 -2/3 0 0 0 0 0 0
0 0 1 0 - 0.8 0 0 0 0 0
0 0 0 1 -1/3 0 -2/3 0 0 0
0 - 1/7 0 0 1 -2/7 0 -4/7 0 0
0 0 - 0.2 0 0 1 0 0 -0.8 0
0 0 0 0 0 0 1 - 1 0 0
0 0 0 -1/3 0 0 0 1 -2/3 0
0 0 0 0 -1/3 0 0 0 1 -2/3
0 0 0 0 0 - 1 0 0 0 1




.

The method of fixed-point iterations with initial vector e is used for solving this
system. The first three columns of the following tables show the vectors of the lower
bounds xL, the vector of the exact solution x, and the vectors of the upper bounds
xU . Approximate solutions x(k) used for creating these bounds are presented in the
fourth columns and their residual vectors r(k) in the fifth columns. Furthermore, an
error factor δerr is computed as an additional criterion of convergence,

δerr = min
i=1,...,n

xL
i

xU
i

. (6)

6. Conclusions

Systems of linear algebraic equations with an M-matrix appear in many parts
of mathematics. If the right-hand side vector of the given system is positive, we may
use this simple method to bound the exact solution with help of basic iterative
methods.

The obtained bounds may be used to verify the accuracy of the computed solu-
tion. The approximate solutions xL, xU computed in Table 1 can be used to restart
the iterative process [1].
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Lower bnd. xL Exact sol. x Upper bnd. xU Approx. x(k) Residual r(k)

99.269406 105.000000 106.412140 79.876550 0.236850
98.320974 104.000000 105.395466 79.113400 0.236850
82.846169 87.579104 88.807202 66.661688 0.195356
104.635728 110.710448 112.164585 84.194530 0.247642
102.307712 108.223881 109.669062 82.321305 0.244195
98.700281 104.376119 105.802065 79.418607 0.237525
104.397207 110.453731 111.908902 84.002605 0.249366
103.464330 109.453731 110.908902 83.251972 0.249366
101.479317 107.325373 108.781061 81.654742 0.239748
99.647874 105.376119 106.817840 80.181082 0.237525

Tab. 1: Solution after k = 150 iterations, ‖r(k)‖= 0.752329, δerr=0.932877.

Lower bnd. xL Exact sol. x Upper bnd. xU Approx. x(k) Residual r(k)

104.727984 105.000000 105.062731 103.534808 0.013813
103.730431 104.000000 104.061990 102.548621 0.013813
87.354444 87.579104 87.633660 86.359207 0.011393
110.422097 110.710448 110.775045 109.164048 0.014442
107.943055 108.223881 108.288080 106.713250 0.014241
104.106702 104.376119 104.439464 102.920605 0.013852
110.166244 110.453731 110.518374 108.911110 0.014543
109.169430 109.453731 109.518374 107.925653 0.014543
107.047876 107.325373 107.390039 105.828270 0.013982
105.104214 105.376119 105.440165 103.906753 0.013852

Tab. 2: Solution after k = 450 iterations, ‖r(k)‖= 0.043876, δerr=0.996814.

Lower bnd. xL Exact sol. x Upper bnd. xU Approx. x(k) Residual r(k)

104.999085 105.000000 105.000210 104.995017 0.000047
103.999094 104.000000 104.000208 103.995064 0.000047
87.578349 87.579104 87.579287 87.574955 0.000039
110.709478 110.710448 110.710664 110.705188 0.000049
108.222936 108.223881 108.224096 108.218743 0.000048
104.375213 104.376119 104.376332 104.371169 0.000047
110.452765 110.453731 110.453948 110.448485 0.000049
109.452775 109.453731 109.453948 109.448534 0.000049
107.324440 107.325373 107.325590 107.320281 0.000048
105.375205 105.376119 105.376334 105.371122 0.000047

Tab. 3: Solution after k=1050 iterations, ‖r(k)‖= 0.000149, δerr=0.999989.
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Disadvantages of this approach are given by strict conditions that need to be
fulfilled. Most restrictive conditions are the positive right-hand side and the need
for a modificating vector. The positive right-hand side appears in some problems
arising in modelling of Markov chains. The modificating vector is obtained either by
computing a sufficient approximation, which is sometimes very difficult, or by using
an extremely slow iterative method. On the other hand, having the modificating
vector, one matrix-vector multiplication is enough to construct these bounds.
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[4] Š. Klapka: Markov models in signalling systems. Disertation Thesis, MFF UK
Praha, 2002 (in Czech).

[5] Y. Saad: Iterative methods for sparse linear systems. SIAM, Philadelphia, 1996.

148



ON THE LONGEST-EDGE BISECTION ALGORITHM∗

Aleš Kropáč, Michal Kř́ıžek

There are many methods for refining finite element simplicial partitions in Rd,
d ∈ {2, 3, . . . }. One of them is the longest-edge bisection algorithm. It is very
popular for its simplicity, especially in the three-dimensional space. It chooses the
longest edge in a given simplicial partition. Dividing this edge by its midpoint,
we can define a locally refined partition by simplices that surround this midpoint.
Repeating this process, we obtain a family of nested face-to-face partitions (see
Figures 1, 2, and 4). This approach is much simpler (especially for d > 2) than the
standard local refinement of simplicial partitions that uses red and green subdivisions
(see, e.g., [3], [7]). Note that this family is never uniquely defined, since during the
refinement process there appear many new edges having the same length due to
the bisections. For instance, the last but one bisection in Figure 1 is not uniquely
determined.

There is an extensive literature devoted to numerical analysis of the longest-edge
bisection algorithm, see [1]–[20]. For instance, Rosenberg and Stenger [16] for d = 2
show that angles of triangles do not tend to zero for infinitely many steps of a bisec-
tion algorithm. A somewhat stronger result has been achieved by M. Stynes [20] who
showed that the repeated bisection process yields only a finite number of similarity-
distinct subtriangles. This number is bounded when the discretization parameter h
tends to zero. However, Stynes admits the so-called hanging nodes which do not
appear in face-to-face partitions considered in this paper.

Without loss of generality we can analyse the longest-edge bisection algorithm
only for one simplex from a given initial simplicial partition. In Figures 1 and 2,
we observe subsequent partitions of a triangle and a tetrahedron by the longest-edge
bisection algorithm.

The worst case from the point of degeneracy happens when the regular simplex
is bisected (see [5]). For instance, for the equilateral triangle, the minimal angle is
halved. On the other hand, this situation does not occur while bisecting obtuse and
right triangles. In the next theorem we prove that in this case the minimal angle
does not change.

Theorem 1. Let α be the smallest angle of a nonacute triangle. Bisecting the
longest edge determines two triangles whose all angles are not less than α.

∗This paper was supported by Institutional Research Plan nr. AV0Z 10190503 and Grant
nr. 201/04/1503 of the Grant Agency of the Czech Republic.
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Fig. 1:

Fig. 2:

P r o o f . Let a nonacute triangle be given. Denote its angles so that

α ≤ β ≤ π

2
≤ γ (1)

and let

a ≤ b ≤ c (2)

be the associated edges.

Now bisect the triangle by the median t to the longest edge c. Denote the new
angles by α1, β1, γ1, and γ2 as illustrated in Figure 3. We show that all these angles
are not less than α.
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By the Cosine theorem we see that

a2 = t2 +
( c

2

)2

− tc cos α1,

b2 = t2 +
( c

2

)2

− tc cos β1.

From this and (2) we find that cos α1 ≥ cos β1. Since α1 + β1 = π and the function
cos is decreasing on the whole interval [0, π], we have

α1 ≤ π

2
≤ β1. (3)

A D B

C

α

γ2

γ1

β

ab

c

2

c

2

α1β1

t

Fig. 3:

Denote vertices of the original triangle ABC as marked in Figure 3. Let D be
the midpoint of the segment AB and let C ′ be such a point that D is the midpoint
of the segment CC ′, i.e., ACBC ′ is a parallelogram. Using the triangle inequality
for the triangle ACC ′ and relation (2), we get 2t < a + b ≤ 2b, i.e.,

t < b.

From this and the Sine theorem we obtain

sin α

a
=

sin β

b
<

sin β

t
=

sin α1

a
,

which implies that
α ≤ α1. (4)

Finally, by (1) we know that γ ≥ π
2
, and therefore, t ≤ c

2
. Using again the Sine

theorem, we come to
α ≤ γ2, β ≤ γ1. (5)

From this, (1), (3), and (4) the lemma follows.
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Remark 1. It is γ2 ≤ γ1, since by (5) and (1) we have

2 sin γ2

c
=

sin α

t
≤ sin β

t
=

2 sin γ1

c
.

Remark 2. From the inequality

b ≥ a + b

2
>

c

2

we observe that the edge b will be bisected in the next step.

Theorem 2. Let α0 be the minimum angle in a given triangulation. Then the
longest-edge bisection algorithm yields the following lower bound for any angle α of
refined triangles:

α ≥ α0

2
.

The proof is quite complicated and technical. It is based on some ideas from [16].
We see that for the equilateral triangle the above lower bound α0/2 is attainable.
Let us point out that a similar theorem, which guarantees a nondegeneracy in d = 3,
is still an open problem, even though all triangles on surfaces of all tetrahedra in the
partition will be bisected in the same way as for d = 2.

Numerical tests. In Figure 4, we observe the initial triangulation and the result
of the longest-edge bisection algorithm after 10 and 1000 refining steps.

Fig. 4:

To illustrate that repeated bisection process yields only a finite number of simila-
rity-distinct subtriangles, we have chosen the initial triangle with vertices (0,0),
(10,0), and (9,3.2). Numerical results in Figure 5 indicate that this number is
bounded when h → 0 (cf. [20] for a different approach which produces hanging
nodes, in general). In this test we performed 1000 bisections. In Figure 6 we observe
values of the maximal and minimal angles from the interval (0◦, 180◦) during the
1000 bisections. The minimal angle ≈ 18◦ does not change.
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[3] E. Bänsch: Local mesh refinement in 2 and 3 dimensions. IMPACT Comp. Sci.
Engrg. 3, 1991, 181–191.

[4] A. Eiger, K. Sikorski, F. Stenger: A bisection method for systems of nonlinear
equations. ACM Trans. Math. Software 10, 1984, 367–377.

[5] R. Horst: On generalized bisection of n-simplices. Math. Comp. 66, 1997, 691–
698.

[6] R.B. Kearfott: A proof of convergence and an error bound for the method of
bisection in Rn. Math. Comp. 32, 1978, 1147–1153.
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[11] Á. Plaza, G.F. Carey: About local refinement of tetrahedral grids based on bi-
section. Proc. 5th Internat. Conf. Meshing Roundtable, 1996, 123–136.
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ŠINDEL SEQUENCES AND THE PRAGUE HOROLOGE∗

Michal Kř́ıžek, Alena Šolcová, Lawrence Somer

1. Introduction

The mathematical model of the astronomical clock of Prague was developed by
the professor of Prague University, Jan Ondřej̊uv, called Šindel (see [2]). The clock
was realized by Mikuláš from Kadaň around 1410. The ingenuity of clockmakers of
that time can be demonstrated by the following construction.

The astronomical clock of Prague contains a large gear with 24 slots at increasing
distances along its circumference (see Figure 1). This arrangement allows for a pe-
riodic repetition of 1–24 strokes of the bell each day. There is also a small auxiliary
gear whose circumference is divided by 6 slots into segments of arc lengths 1, 2, 3, 4,
3, 2 (see Figure 1). These numbers form a period which repeats after each revolution
and their sum is s = 15. At the beginning of every hour a catch rises, both gears
start to revolve and the bell chimes. The gears stop when the catch simultaneously
falls back into the slots on both gears. The bell strikes 1 + 2 + · · ·+ 24 = 300 times
every day. Since this number is divisible by s = 15, the small gear is always at the
same position at the beginning of each day.

Fig. 1: The number of bell strokes is denoted by the numbers ..., 9, 10, 11, 12, 13, ...
along the large gear. The small gear placed behind it is divided by slots into segments of
arc lengths 1, 2, 3, 4, 3, 2. The catch is indicated by a small rectangle on the top.

When the small gear revolves it generates by means of its slots a periodic sequence
whose particular sums correspond to the number of strokes of the bell at each hour,

1 2 3 4 3 2︸︷︷︸
5

1 2 3︸ ︷︷ ︸
6

4 3︸︷︷︸
7

2 1 2 3︸ ︷︷ ︸
8

4 3 2︸ ︷︷ ︸
9

1 2 3 4︸ ︷︷ ︸
10

3 2 1 2 3︸ ︷︷ ︸
11

4 3 2 1 2︸ ︷︷ ︸
12

. . . (1)

∗This paper was supported by Institutional Research Plan nr. AV0Z 10190503 and Grant
nr. 1P05ME749 of the Ministry of Education of the Czech Republic.
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In [4] we showed that we could continue in this way until infinity. However, not all
periodic sequences have such a nice summation property. For instance, we immedi-
ately find that the period 1, 2, 3, 4, 5, 4, 3, 2 could not be used for such a purpose,
since 6 < 4+3. Also the period 1, 2, 3, 2 could not be used, since 2+1 < 4 < 2+1+2.

2. Connections with triangular numbers and periodic sequences

In this section we show how the triangular numbers

Tk = 1 + 2 + · · ·+ k =
k(k + 1)

2
, k = 0, 1, 2, . . . , (2)

are related to the astronomical clock. We shall look for all periodic sequences that
have a similar property as the sequence 1, 2, 3, 4, 3, 2 in (1), i.e., that could be used
in the construction of the small gear. Put N = {1, 2, . . . }.

A sequence {ai}∞i=1 is said to be periodic, if there exists p ∈ N such that

∀ i ∈ N : ai+p = ai. (3)

The finite sequence a1, . . . , ap is called a period and p is called the period length.
The smallest p satisfying (3) is called the minimal period length and the associated
sequence a1, . . . , ap is called the minimal period.

Definition 1. Let {ai} ⊂ N be a periodic sequence. We say that the triangular
number Tk for k ∈ N is achievable by {ai}, if there exists a positive integer n such
that

Tk =
n∑

i=1

ai. (4)

The periodic sequence {ai} is said to be a Šindel sequence if Tk is achievable by {ai}
for every k ∈ N, i.e.,

∀ k ∈ N ∃n ∈ N : Tk =
n∑

i=1

ai. (5)

The triangular number Tk on the left-hand side is equal to the sum 1 + · · · + k
of hours on the large gear, whereas the sum on the right-hand side expresses the
corresponding rotation of the small gear (see Figure 2). For the kth hour, we have

k = Tk − Tk−1 =
n∑

i=m+1

ai, (6)

where Tk−1 =
∑m

i=1 ai. Since ai > 0, the number n depending on k in (5) is unique.
From (2) and (4) we also see that a1 = 1 when {ai} is a Šindel sequence.
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•︸︷︷︸
1

• •︸︷︷︸
2

• • •︸ ︷︷ ︸
3

• • • •︸ ︷︷ ︸
4

• • •︸ ︷︷ ︸
3

• •︸︷︷︸
2

•︸︷︷︸
1

• •︸︷︷︸
2

• • •︸ ︷︷ ︸
3

• • • •︸ ︷︷ ︸
4

• • •︸ ︷︷ ︸
3

Fig. 2: The bullets in the kth row indicate the number of strokes at the kth hour (see (6)).
The numbers denote lengths of segments on the small gear.

3. Necessary and sufficient condition for the existence of a Šindel sequence

First we need to define quadratic residues and nonresidues.

Definition 2. Let n ≥ 2 and a be integers. If the quadratic congruence

x2 ≡ a (mod n)

has a solution x, then a is called a quadratic residue modulo n. Otherwise, a is called
a quadratic nonresidue modulo n.

Lemma 1. If f and h are nonnegative integers, then 8f + 1 is a quadratic residue
modulo 2h.

The proof is a consequence of [5, pp. 105–106]). From now on let

s =

p∑
i=1

ai (7)

denote the sum of the period.

Theorem 1. A periodic sequence {ai} is a Šindel sequence if and only if for any
n ∈ {1, . . . , p} and any j ∈ {1, 2, . . . , an − 1} with an ≥ 2 the number

w = 8
( n∑

i=1

ai − j
)

+ 1

is a quadratic nonresidue modulo s.
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P r o o f . ⇐=: Let a periodic sequence {ai} not be a Šindel sequence. According
to (5), there exist positive integers `,m, and j such that am ≥ 2, j ≤ am − 1, and

T` =
m∑

i=1

ai − j. (8)

Let n ∈ {1, . . . , p} be such that n ≡ m (mod p). Then by (2), (8), (7), and (3),

(2`+1)2 = 4`2 +4`+1 = 8T` +1 = 8
( m∑

i=1

ai− j
)

+1 ≡ 8
( n∑

i=1

ai− j
)

+1 (mod s),

i.e., 8
(∑n

i=1 ai − j
)

+ 1 is a square modulo s.

=⇒: Let {ai} be a Šindel sequence with s = 2cd, where c ≥ 0 and d is odd.
Suppose to the contrary that there exist positive integers n, j, and x such that
n ≤ p, an ≥ 2, j ≤ an − 1, x ≤ s, and

w = 8
( n∑

i=1

ai − j
)

+ 1 ≡ x2 (mod s). (9)

From Lemma 1 and (9) there exists y such that

x2 ≡ w (mod d), (10)

y2 ≡ w (mod 2c+3).

By the Chinese remainder theorem (see [3, p. 15]) there exists an integer u ≥ 3
such that u ≡ x (mod d) and u ≡ y (mod 2c+3). Thus, by (10),

u2 ≡ x2 ≡ w (mod d),

u2 ≡ y2 ≡ w (mod 2c+3).

Since gcd(d, 2c+3) = 1, we see that

u2 ≡ w (mod 2c+3d). (11)

Clearly, u is odd, since w is odd. So let u = 2` + 1, where ` ≥ 1. Then, by (11),
u2 = 4`2 + 4` + 1 = w + 2c+3dg for some integer g. Hence, since u ≥ 3, we find
by (2), (11), and (9) that

T` =
u2 − 1

8
=

w − 1

8
+ 2cdg ≡

n∑
i=1

ai − j (mod s).

Thus, there exists a positive integer m such that m ≡ n (mod p) and

T` =
m∑

i=1

ai − j,

which contradicts the assumption that {ai} is a Šindel sequence.
As a byproduct of the proof of Theorem 1, we get the well-known result (see

also [1, p. 15] and Figure 3):

159



Fig. 3: The early Pythagoreans knew that if r is a triangular number, then 8r + 1 is
a square. This result is mentioned as early as about 100 A.D. in Platonic Questions by the
Greek historian Plutarch, see [6, p. 4].

Corollary 1. A positive integer r is a triangular number if and only if 8r + 1 is
a square.

Remark 1. In Theorem 1, we require that

w = 8
( n∑

i=1

ai − j
)

+ 1

be a quadratic nonresidue modulo s for various values of n and j when {ai} is a Šindel
sequence. A sufficient condition for this to occur is that w be a quadratic nonresidue
for some odd prime q dividing s. To see that this condition is not necessary, consider
the periodic sequence {ai} given in Example 2 below with p = 11, s = 25, and the
period 1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4. Then

8
( 5∑

i=1

ai − 2
)

+ 1 = 65,

which is a quadratic nonresidue modulo 25, but is a quadratic residue modulo 5.
Note that 5 is the only odd prime dividing s = 25.

Remark 2. Consider the sequence {ai} with period 1, 2, 1, 1, 1, . . . , 1. Note that

w = 8
( 2∑

i=1

ai − 1
)

+ 1 = 17.

By Theorem 1 and the law of quadratic reciprocity one sees that (cf. [3, pp. 23–25])
if s is an odd prime and s ≡ 1, 2, 4, 8, 9, 13, 15 or 16 (mod 17), then w is a quadratic
residue modulo s and thus, {ai} is not a Šindel sequence. Other patterns of the
period of periodic sequences {ai} can be similarly investigated.
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4. Construction of the primitive Šindel sequence

Definition 3. A Šindel sequence {a′i} with the minimal period length p + 1 is said
to be composite, if there exists a Šindel sequence {ai} and ` ∈ N such that

ai = a′i, i = 1, . . . , `− 1,

a` = a′` + a′`+1,

ai = a′i+1, i = ` + 1, . . . , p.

The period 1, 2, 3, 2, 2, 3, 2 derived from the period 1, 2, 3, 4, 3, 2 of sequence (1)
produces a composite Šindel sequence. In other words, the astronomical clock would
also work with the small gear corresponding to this composite Šindel sequence.

Definition 4. A Šindel sequence {ai} is called primitive if it is not composite. The
sequence 1, 1, 1, . . . is called a trivial Šindel sequence.

The proof of the next theorem contains an explicit algorithm for finding a prim-
itive Šindel sequence for a given s.

Theorem 2. Let s be a positive integer. Then there exists a unique primitive
Šindel sequence {ai} such that (7) holds for one of its not necessarily minimal period
lengths p. The primitive Šindel sequence {ai} is trivial if and only if s = 2h for
h ≥ 0.

P r o o f . Let 1 ≤ b1 < b2 < · · · < bt ≤ s be all the integers such that each 8bn +1 is
a square modulo s for n = 1, . . . , t. We observe that b1 = 1 and bt = s. Now choose
the period as follows: a1 = b1 and an = bn − bn−1 for n = 2, 3, . . . , t. Then

∀n ∈ {1, 2, . . . , t} : bn =
n∑

i=1

ai.

We claim that {ai} is a Šindel sequence. Note that if n ∈ {1, . . . , t}, an ≥ 2,
and j ∈ {1, 2, . . . , an − 1}, then bn−1 <

∑n
i=1 ai − j < bn. Then 8(

∑n
i=1 ai − j) + 1

is a quadratic nonresidue modulo s, since 8b1 + 1, . . . , 8bt + 1 are all the quadratic
residues modulo s. It now follows from Theorem 1 that {ai} is a Šindel sequence.

Moreover, one sees that {ai} is a primitive Šindel sequence having a period length
p = t and satisfying (7). It is also clear by construction that {ai} is the unique
primitive Šindel sequence satisfying (7) for some period length p.

⇐=: By the above construction of the period, the primitive Šindel sequence cor-
responding to s is nontrivial if and only if there exists a positive integer f ≤ s such
that 8f + 1 is a quadratic nonresidue modulo s. By Lemma 1, 8f + 1 is always
a quadratic residue modulo s = 2h for h ≥ 0. Hence, the primitive Šindel sequence
corresponding to s = 2h is the trivial Šindel sequence.

=⇒: Conversely, assume that s has an odd prime divisor q. Let d be a quadratic
nonresidue modulo q. Since 8 is invertible modulo q, one sees that if z is the inverse
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of 8 modulo q and f ≡ z(d − 1) (mod q), then 8f + 1 ≡ d (mod q). It now follows
that the primitive Šindel sequence corresponding to s is nontrivial.

We have the following immediate corollaries to Theorems 2 and 1:

Corollary 2. Let {ai} be a periodic sequence with the minimal length p of the
period and s = 2m, where m is a nonnegative integer. Then {ai} is a Šindel sequence
if and only if {ai} is the trivial Šindel sequence.

Corollary 3. A periodic sequence {ai} is a primitive Šindel sequence if and only if
for any n ∈ {1, . . . , p} and any j ∈ {1, 2, . . . , an − 1} with an ≥ 2 the number

w = 8
( n∑

i=1

ai − j
)

+ 1

is a quadratic nonresidue modulo s and

v = 8
n∑

i=1

ai + 1

is a quadratic residue modulo s.

Theorem 3. For any k ∈ N there exist ` ∈ N and a Šindel sequence {ai} such that
a` = k.

P r o o f . It was stated in Corollary 1 that for r ∈ N, 8r + 1 is a square if and only
if r is a triangular number. Let k = Tk − Tk−1 be given (see (6)). Thus it suffices by
the proof of Theorem 2 to find a positive integer s ≥ Tk such that 8(Tk−1 + j) + 1 is
a quadratic nonresidue modulo s for j = 1, 2, . . . , k − 1.

For a fixed j ∈ {1, . . . , k − 1} let

8(Tk−1 + j) + 1 =
v∏

i=1

pαi
i

be the prime power factorization. Since 8(Tk−1 + j) + 1 is not a square, some αi is
odd. Without loss of generality, we can assume that α1 is odd. Let c1 be a quadratic
nonresidue modulo p1. By the Chinese remainder theorem and Dirichlet’s theorem
on the infinitude of primes in arithmetic progressions, one can find a prime qj ≥ Tk

such that qj ≡ 1 (mod 4), qj = c1 (mod p1), and qj ≡ 1 (mod pi) for i ∈ {2, . . . , v}.
By the law of quadratic reciprocity and the properties of the Jacobi symbol
(see [3, p. 24–25]), 8(Tk−1 + j) + 1 is a quadratic nonresidue modulo qj. Now simply
let s be the product of the distinct qj’s for j ∈ {1, . . . , k − 1}. .
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5. Numerical examples

We developed a program that generates the primitive Šindel sequence for a given s.
It is based on the numerical algorithm presented in the proof of Theorem 2. By this
theorem we know that the primitive primitive Šindel sequence is uniquely determined
for each positive integer s.

s Primitive Šindel sequences

1 1

2 1 1

3 1 2

4 1 1 1 1

5 1 2 2

6 1 2 1 2

7 1 2 3 1

8 1 1 1 1 1 1 1 1

9 1 2 3 3

10 1 2 2 1 2 2

11 1 2 1 2 4 1

12 1 2 1 2 1 2 1 2

13 1 1 1 3 2 2 3

14 1 2 3 1 1 2 3 1

15 1 2 3 4 3 2

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 2 4 1 4 2

18 1 2 3 3 1 2 3 3

19 1 1 1 3 1 2 1 5 2 2

20 1 2 2 1 2 2 1 2 2 1 2 2

21 1 2 3 1 3 3 2 6

22 1 2 1 2 4 1 1 2 1 2 4 1

23 1 2 2 1 3 1 3 2 5 1 1 1

24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

25 1 2 2 1 4 1 4 1 4 1 4
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Example 1. The period 1, 2, 3, 4, 5, 3, 3, 7, 2, 3, 3, 9 with minimal period length
p = 12 and s = 45 yields a primitive Šindel sequence {ai} with a large value of
a12 = 9 relative to s (see Theorem 3).

Example 2. The next table shows values of all primitive Šindel sequences for s =
1, . . . , 25. Anyway, we verified that no primitive Šindel sequence up to s = 1000
has such a nice symmetry property as that in (1). From the table we also observe
that trivial primitive Šindel sequences appear when s = 2h for some h ≥ 0 (see
Theorem 2).
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[2] Z. Horský: The astronomical clock of Prague. Panorama, Prague, 1988.
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ON SOLVING NON-SYMMETRIC SADDLE-POINT SYSTEMS
ARISING FROM FICTITIOUS DOMAIN APPROACHES∗

Radek Kučera, Tomáš Kozubek, Jaroslav Haslinger

1. Introduction

We propose a fast method for finding a pair (u, λ) ∈ Rn×Rm that solves a linear
system of algebraic equations called the (generalized) saddle-point system :

(
A B>

1

B2 0

) (
u
λ

)
=

(
f
g

)
, (1)

where the diagonal block A is an (n×n) matrix, the off-diagonal blocks B1 and B2 are
(m× n) matrices with full row-rank and vectors f , g are of order n, m, respectively.

Our contribution is inspired by a class of saddle-point systems arising from ficti-
tious domain formulations of PDEs [3, 4]. Therefore we will be interested especially
in systems (1) with n large, A singular and B1, B2 sparse. Moreover, we will assume
that m is much smaller than n and that the defect l of A, i.e. l = n − rank A, is
much smaller than m.

There are several basic approaches used for solving (1); see e.g. [1]. Due to the
structure of our matrices, we pay our attention to the class of methods that are based
on the Schur complement reduction. Their key idea consists in eliminating the first
unknown u. This leads, in the case of non-singular A, to the reduced system for the
second unknown λ. The matrix of this system is the (negative) Schur complement
−S = B2A

−1B>
1 . If this system is solved by an iterative method, we do not need to

form S explicitly since only the matrix-vector products with S are needed.
The situation is not so easy if A is singular. In this case, the first unknown u

can not be completely eliminated from (1). The Schur complement reduction leads
now to another saddle-point system for λ and a new unknown, say α, that corre-
sponds to the null-space of A. Fortunately after applying orthogonal projectors, we
obtain an equation only in terms of λ. As our original saddle-point system (1) is
non-symmetric, this equation can be solved by a projected Krylov method for non-
symmetric matrices. In our numerical tests, we will use the projected variant of the
BiCGSTAB algorithm.

∗Supported by the National Program of Research ”Information Society” under project
1ET400300415 and by the grant IAA1075402 of the Grant Agency of the Czech Academy of Sci-
ences.
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The presented method generalizes ideas used in the algebraic description of FETI
domain decomposition methods [2], in which A is symmetric, positive semidefinite
and B1 = B2.

2. A new variant of the fictitious domain method

Let Ω be a bounded domain in Rd, d = 2, 3 with the Lipschitz boundary ∂Ω, which
is split into three non-overlapping parts ΓD, ΓN and ΓG (see Figure 1). We will be
concerned with the following abstract class of mixed boundary value problems:

Lu = f in Ω,

u = gD on ΓD,

∂u

∂νL
= gN on ΓN ,

∂u

∂νL
+ βu = gG on ΓG,





(P)

where L is an elliptic operator of the second order, f ∈ L2(Ω), gD ∈ H1/2(ΓD),
gN ∈ L2(ΓN), gG ∈ L2(ΓG), β is a constant and ∂

∂νL
denotes the normal derivative

on ∂Ω. We assume that (P) has a unique solution u.

Any fictitious domain (FD) formulation of PDEs transforms the original problem
defined in a domain Ω to a new one solved in a simple shaped domain Ω̂ (e.g. a box),
which contains Ω. Its solution will be denoted by û. The standard boundary La-
grange multiplier FD approach (see [3]) gives rise to a singularity of û located on the
boundary ∂Ω. This fact can result in an intrinsic error of the computed solution.
Therefore we recommend to move this singularity further of ∂Ω, i.e. to enforce the
prescribed boundary conditions by new control variables defined not on ∂Ω but on an

Fig. 1: Geometry. Fig. 2: Auxiliary boundary ∂Ω̃.
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auxiliary boundary ∂Ω̃ = Γ̃D
⋃

Γ̃N
⋃

Γ̃G obtained by shifting the Bezièr approxima-
tion of ∂Ω = ΓD

⋃
ΓN

⋃
ΓG in the outer normal direction with a step δ (see Fig. 2).

This approach improves significantly the error of the computed FD solution and the
rates of convergence.

Let us introduce boundary control variables λ̃D ∈ Λ̃D := H−1/2(Γ̃D), λ̃N ∈ Λ̃N :=
H−1/2(Γ̃N) and λ̃G ∈ Λ̃G := H−1/2(Γ̃G) defined on Γ̃D, Γ̃N and Γ̃G, respectively.
Instead of (P), we will solve the following problem:

Find (û, λ̃D, λ̃N , λ̃G) ∈ V × Λ̃D × Λ̃N × Λ̃G such that

a(û, v̂) + b̃D(λ̃D, τ̃Dv̂) + b̃N(λ̃N , τ̃N v̂) + b̃G(λ̃G, τ̃Gv̂) = (f̂ , v̂)0,Ω̂ ∀v̂ ∈ V,

bD(µD, τDû) = bD(µD, gD) ∀µD ∈ ΛD,

bN(µN , ∂û
∂νL

) = bN(µN , gN) ∀µN ∈ ΛN ,

bG(µG, ∂û
∂νL

+ βτGû) = bG(µG, gG) ∀µG ∈ ΛG,





(P̂)

where a : V × V → R1 is a continuous, coercive bilinear form resulting from the
weak formulation of the first equation in (P), f̂ is an extension of f from Ω to Ω̂,
τD : V 7→ H1/2(ΓD), τG : V 7→ H1/2(ΓG), τ̃D : V 7→ H1/2(Γ̃D), τ̃N : V 7→ H1/2(Γ̃N)
and τ̃G : V 7→ H1/2(Γ̃G) stand for the trace mappings, respectively, and the bi-
linear forms bD, bN , bG and b̃D, b̃N , b̃G denote the corresponding duality pairings.
Finally, ΛD := H−1/2(ΓD), ΛN := H1/2(ΓN), ΛG := H1/2(ΓG) and V is a closed
subspace of H1(Ω̂). Typical choices for V are: H1(Ω̂), H1

0 (Ω̂), or H1
P (Ω̂) = {v|v ∈

H1(Ω̂), v is periodic on ∂Ω̂} if Ω̂ is a cartesian product of intervals.
A discretization of (P̂) based on a mixed finite element method leads to a saddle-

point system (1). One can use fairly structured meshes in Ω̂ ensuring favorable
properties of the stiffness matrix A. Therefore actions of a generalized inverse A† (or
inverse A−1) are cheaply computable and, in addition, the null-space of A and A>

can be easily identified [6]. The geometry of ∂Ω together with the type of boundary
conditions are characterized by B1, B2, which are highly sparse.

3. Algorithms

Denote N(B|V) the null-space and R(B|V) the range-space of an (m×n) matrix B
in a subspace V ⊂ Rn. If V = Rn, we simply write N(B) := N(B|Rn) and R(B) :=
R(B|Rn). The system (1) has a unique solution iff [5]

N(A) ∩ N(B2) = {0}, (2)

R(A|N(B2)) ∩ R(B>
1 ) = {0}. (3)

Suppose that A is singular with the defect l = dimN(A), l ≥ 1 and consider
(n × l) matrices N and M whose columns span the null-space N(A) and N(A>),
respectively. Finally, denote by A† a generalized inverse to A. In what follows we
will consider an arbitrary but fixed selections of A†, N and M .
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The generalized Schur complement of A in (1) is defined by

S =

(
−B2A

†B>
1 B2N

M>B>
1 0

)
.

Notice that S is invertible provided that (2), (3) are satisfied. The following theorem
describes the Schur complement reduction.

Theorem 3.1 [5] Assume that both B1, B2 have full row-ranks and that (2), (3) are
satisfied. Then the second component λ of a solution to (1) is the first component of
a solution to (

F G>
1

G2 0

) (
λ
α

)
=

(
d
e

)
, (4)

where F := B2A
†B>

1 , G1 := −N>B>
2 , G2 := −M>B>

1 , d := B2A
†f − g and e :=

−M>f. The first component u of a solution to (1) is given by the formulae

u = A†(f −B>
1 λ) + Nα.

Let us point out that (4) is formally the same saddle-point system as (1), but its
size is considerably smaller. We will modify the new system (4) by two orthogonal
projectors

P1 := I −G>
1 (G1G

>
1 )−1G1, P2 := I −G>

2 (G2G
>
2 )−1G2,

on N(G1), N(G2), respectively. Our method is based on the following results.

Lemma 3.1 [5] The linear operator P1F : N(G2) 7→ N(G1) is invertible.

Theorem 3.2 [5] Let λN ∈ N(G2), λR ∈ R(G>
2 ). Then λ = λN + λR is the first

component of a solution to (4) iff

λR = G>
2 (G2G

>
2 )−1e

and
P1FλN = P1(d− FλR).

The second component α is given by

α = (G1G
>
1 )−1G1(d− Fλ).

Let us summarize the previous results in the algorithm scheme. It turns out to
be reasonable to form and store the (l×m) matrices G1, G2 and the (l× l) matrices
H1 := (G1G

>
1 )−1, H2 := (G2G

>
2 )−1 because l is small. On the other hand, the

(m×m) matrices F , P1 and P2 are not assembled explicitly.
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Algorithm: Projected Schur Complement Method (PSCM)

Step 1.a: Assemble G1 = −N>B>
2 , G2 = −M>B>

1 , d = B2A
†f − g and e = −M>f .

Step 1.b: Assemble H1 = (G1G
>
1 )−1 and H2 = (G2G

>
2 )−1.

Step 1.c: Assemble λR = G>
2 H2e.

Step 1.d: Assemble d̃ = P1(d− FλR).

Step 1.e: Solve the equation P1FλN = d̃ on N(G2).
Step 1.f: Compute λ = λN + λR.
Step 2: Compute α = H1G1(d− Fλ).
Step 3: Compute u = A†(f −B>

1 λ) + Nα.

The heart of the algorithm consists in Step 1.e. Its solution can be computed by
a projected Krylov subspace method. The projected BiCGSTAB algorithm [5] can
be derived from the non-projected one [7] by choosing an initial iterate λ0

N in N(G2),
projecting the initial residual in N(G2) and replacing the operator P1F by its pro-
jected version P2P1F . Finally, let us point out that convergence of the projected
BiCGSTAB algorithm can be accelerated by a reorthogonalization procedure or by
a multigrid technique.

4. Numerical experiments

We illustrate the efficiency of the presented method on a model problem (P).
Let L = −∆, Ω = {(x, y) ∈ R2| (x− 0.5)2/0.42 + (y − 0.5)2/0.22 < 1} and consider
the mixed Dirichlet-Neumann boundary conditions with ΓD and ΓN corresponding
to the upper and lower half-part of the ellipse ∂Ω, respectively. Let us choose the
right hand-sides f , gD and gN in (P) appropriately to the exact solution uex(x, y) =
100 ((x− 0.5)3 − (y − 0.5)3). In the FD formulation (P̂), we take Ω̂ ≡ (0, 1)× (0, 1)
and V = H1

P (Ω̂). This space is approximated by piecewise bilinear functions defined
on a rectangulation of Ω̂ with a stepsize h. The spaces ΛD, ΛN and their tilded
counterparts are approximated by piecewise constant functions defined on partitions
of polygonal approximations of ∂Ω and ∂Ω̃.

In tables below, we report the errors of the approximate solution uh with respect
to the stepsize h in the indicated norms together with the number of primal (n) and
control (m) variables, the number of BiCGSTAB iterations and the computational
time.

Tables 1 and 2 summarize results obtained by a classical FD method with bound-
ary Lagrange multipliers on ∂Ω. The BiCGSTAB iterations are accelerated by
biorthogonalization, when B2 in (1) is replaced by (B2B1)

−1B2.
From Tables 3 and 4 one can see that the errors are significantly smaller, when

the auxiliary boundary ∂Ω̃ (with δ = 8h) is used. Here the BiCGSTAB iterations
are accelerated by a multigrid strategy.
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Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 15 0.188 2.3637e-002 2.1633e+000 9.0989e-002
1/256 66049/70 24 1.36 1.2831e-002 1.4736e+000 4.9341e-002
1/512 263169/124 32 14.24 7.1820e-003 9.9318e-001 2.7571e-002
1/1024 1050625/220 46 93.11 3.9157e-003 7.1732e-001 1.5345e-002

Tab. 1: Convergence without ∂Ω̃.

Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 9 0.11 2.3386e-002 2.1550e+000 8.9462e-002
1/256 66049/70 12 0.735 1.2808e-002 1.4734e+000 4.9238e-002
1/512 263169/124 22 10.03 7.1183e-003 9.9261e-001 2.7336e-002
1/1024 1050625/220 30 60.23 3.8315e-003 7.1694e-001 1.5064e-002

Tab. 2: Convergence without ∂Ω̃, biorthogonalization.

Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 25 0.281 5.3431e-004 2.4639e-002 1.8577e-003
1/256 66049/70 39 2.218 1.4133e-004 1.2407e-002 5.7929e-004
1/512 263169/124 99 42.22 4.3848e-005 7.0675e-003 2.2314e-004
1/1024 1050625/220 200 371.5 1.2541e-005 3.6767e-003 6.9726e-005

Tab. 3: Convergence with ∂Ω̃.

Step h n/m Iters. C.time[s] δL2(Ω) δH1(Ω) δL2(∂Ω)

1/128 16641/40 16 0.266 7.3218e-004 2.8843e-002 2.3947e-003
1/256 66049/68 20 1.39 1.3533e-004 1.1927e-002 5.0063e-004
1/512 263169/124 33 16.37 3.3349e-005 5.9480e-003 1.4539e-004
1/1024 1050625/220 38 94.25 1.3469e-005 3.7054e-003 5.2209e-005

Tab. 4: Convergence with ∂Ω̃, multigrid.

170



References

[1] M. Benzi, G.H. Golub, J. Liesen: Numerical solution of saddle point systems.
Acta Numerica, 2005, 1–137.

[2] C. Farhat, J. Mandel, F.X. Roux: Optimal convergence properties of the FETI
domain decomposition method. Comput. Methods Appl. Mech. Engrg. 115, 1994,
365–385.

[3] R. Glowinski, T. Pan, J. Periaux: A fictitious domain method for Dirichlet prob-
lem and applications. Comput. Meth. Appl. Mech. Engrg. 111, 1994, 283–303.
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THE DISCONTINUOUS GALERKIN METHOD FOR LOW-MACH
FLOWS∗

Václav Kučera

1. Introduction

Our goal is to develop a numerical technique allowing the solution of compress-
ible flow with a wide range of the Mach number. This technique is based on the
discontinuous Galerkin finite element method (DGFEM), which employs piecewise
polynomial approximations without any requirement on the continuity on interfaces
between neighbouring elements. The DGFEM space semidiscretization is combined
with a semi-implicit time discretization (Section 2.) and a special treatment of bound-
ary conditions (Section 3.). In this way we obtain a numerical scheme requiring the
solution of only one linear system on each time level. This scheme is successfully
tested on flows with Mach numbers as low as 10−4. As for the transonic case it is
necessary to avoid the Gibbs phenomenon manifested by spurious overshoots and
undershoots in computed quantities near discontinuities and steep gradients. These
phenomena do not occur in low Mach number regimes, however in the transonic case
they cause instabilities in the semi-implicit solution. Here we present a possibility
how to treat this problem (Section 4.). Section 5. presents computational results for
small Mach numbers as well as transonic flow.

2. Discretization

We discretize the Euler equations in the conservative form:

∂w

∂t
+

2∑
s=1

∂f s(w)

∂xs

= 0 in Ω× (0, T ),

w = (ρ, ρv1, ρv2, e)
T ∈ IR4,

f i(w) = (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (e + p)vi)
T.

(1)

Let Th be a partition of Ω into a finite number of triangles with a numbering I.
Let Γij = ∂Ki ∩ ∂Kj be a common edge of two triangles. The DGFEM uses the
finite element space of discontinuous piecewise polynomial functions.

Sh = Sp,−1(Ω, Th) = {v; v|K ∈ Pp(K) ∀K ∈ Th}, (2)

∗This work is a part of the research project No. MSM 0021620839 of the Ministry of Education
of the Czech Republic. The research is partly supported by the Grant No. 6/2005/R of the Grant
Agency of Charles University.
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where Pp(K) is the space of all polynomials on K of degree ≤ p. In the current im-
plementation, P 0, P 1 and P 2 approximations are used along with 5th order Gaussian
quadrature rules on elements and edges.

We multiply (1) by a test function ϕ ∈ [Sh]
4 and integrate over Ki ∈ Th. With

the aid of Green’s theorem and summing over all i ∈ I, we obtain

d

dt

∑
Ki∈Th

∫

Ki

w ·ϕ dx =

=
∑

Ki∈Th

∫

Ki

2∑
s=1

f s(w) · ∂ϕ

∂xs

dx

︸ ︷︷ ︸
T1

+
∑
i∈I

∑

j∈S(i)

∫

Γij

H(w|Γij
,w|Γji

,nij) ·ϕ dS

︸ ︷︷ ︸
T2

.
(3)

In the term T2, we have incorporated an approximation using a numerical flux H,
as known from the finite volume method. The approximate solution is defined as
wh ∈ [Sh]

4 such that (3) holds for all ϕh ∈ [Sh]
4.

Scheme (3) represents a system of ordinary differential equations, which we must
discretize with respect to time. Explicit time discretization is however undesirable
due to a CFL-like condition, which limits the time step proportionally to the Mach
number. A fully implicit scheme presents us with the task of solving a large non-
linear system on each time level. We therefore use the method presented in [4]. A
forward Euler method is used and the nonlinear terms in the scheme are linearized.
The resulting systems are solved using block-Jacobi preconditioned GMRES or the
UMFPACK direct solver.

The term T1 in (3) is linearized using homogeneity of the Euler fluxes:

T1 ≈
∑
i∈I

∫

Ki

2∑
s=1

Df s(w
k
h)

Dw
wk+1

h · ∂ϕh

∂xs

dx. (4)

As for the term T2, the Vijayasundaram numerical flux is chosen, since it is
suitable for linearization. This numerical flux has the form

HV S(wL,wR,n) = P+

(
wL + wR

2
,n

)
wL + P−

(
wL + wR

2
,n

)
wR. (5)

3. Boundary conditions

The choice of appropriate boundary conditions is a delicate problem which plays
a key role in the presented algorithm. Boundary conditions are incorporated into
the DGFEM, as in the finite volume method, via the choice of H(wL,wR,n) or
wR = w|Γji

for boundary edges. In the case of impermeable walls, we prescribe the
no-stick condition v · n. The situation is much more problematic on the inlet and
outlet - standard boundary conditions reflect acoustic effects coming from the inside
of Ω. This behavior is nonphysical and the reflected interfering density and pressure
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waves corrupt the solution in the low-Mach number case. To cure this disease new
characteristic based boundary conditions are derived, which reflect the hyperbolic
character of the Euler equations and are transparent to acoustic phenomena. These
boundary conditions are a key ingredient in low-Mach calculations.

Using the rotational invariance and homogeneity we write the Euler equations in
the nonconservative form

∂q

∂t
+ A1(q)

∂q

∂x̃1

= 0, (6)

where q = Q(n)w and Q(n) is a standard 4 × 4 rotational matrix (see [1]). We
linearize this system around the state qi = Q(n)wi and obtain a linear system. The
goal is to choose the boundary state qj in such a way that this initial-boundary
problem is well posed, i.e. has a unique solution. This linearized system has a
solution which can be written explicitly using the method of characteristics. We
shall take some state q0

j = Q(n)w0
j . The state w0

j is the state vector of the far-field
flow. We calculate the eigenvectors rs, s = 1, . . . , 4 of the matrix A1(qi), arrange
them as columns in the matrix T and calculate T−1 (explicit formulae can be found
in [1]). We calculate

β = T−1qi, α = T−1q0
j . (7)

Now we calculate the state qj according to the presented process:

qj :=
4∑

s=1

γsrs = Tγ, γs =

{
αs, λs ≥ 0,

βs, λs < 0
(8)

and λs, s = 1, . . . , 4 are eigenvalues of A1(qi). Finally the sought boundary state
is wj = Q−1(n)qj. Since we have respected the hyperbolic character of the Euler
equations, these boundary conditions seem to give a natural choice for the boundary
state wj.

4. Shock capturing

Our approach is based on the discontinuity indicator g(i) proposed in [2] defined
by

g(i) =

∫

∂Ki

[ρk
h]

2 dS
/
(hKi

|Ki|3/4), Ki ∈ Th. (9)

We define a discrete shock indicator on the basis of (9):

G(i) =

{
0, g(i) < 1,

1, g(i) ≥ 1.
, Ki ∈ Th.

To the left-hand side of (3) we add the form β(wh,ϕh) defined by

β(w, ϕ) = C
∑
i∈I

hKi
G(i)

∫

Ki

∇w · ∇ϕ dx, (10)
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where C ≈ 1. This artificial term represents a discrete Laplacian with zero Neumann
boundary conditions on each element, thus forcing the solution to a piecewise con-
stant function. The stabilization form β is treated implicitly (with G(i) computed
from wk

h).
This form limits the order of accuracy on each element lying on a discontinuity.

However, it appears that on finely refined grids this is insufficient. Therefore, we
propose to augment the left-hand side of (3) by adding the form J(wh,ϕh) defined
as

J(w, ϕ) = ε
∑
i∈I

∑

j∈s(i)

1

2

(
G(i) + G(j)

) ∫

Γij

[w] · [ϕ] dS, (11)

where ε ≈ 1 and [u]|Γij
= uij − uji is the jump on Γij of a function u ∈ Sh. In this

way we penalize inter-element jumps in the vicinity of the shock wave. This form
can be treated implicitly, similarly as β(w, ϕ).

5. Numerical examples

In this section we present the solution of some test problems in order to demon-
strate the accuracy and robustness of the proposed method. In all examples quadratic
elements (r = 2) were used for obtaining steady state solutions for ”t → ∞”. The
number of time steps necessary to obtain the steady state solution in the following
test cases is approximately 100-200.

1) Irrotational flow past a symmetric Joukowski airfoil First we consider
flow past a symmetric Joukowski profile with zero angle of attack. Using the complex
function method from [3], we can obtain the exact solution of incompressible inviscid
irrotational flow for this test case. We assume that the far field Mach number of
compressible flow M∞ = 0.0001. Figure 1 shows a detail near the profile of the

Fig. 1: Velocity isolines for the approximate solution of compressible flow (left) and for
the exact solution of incompressible flow (right).
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velocity isolines for the approximate solution of compressible flow and for the exact
solution of incompressible flow, respectively. The mesh was formed by 4103 triangular
elements.

2) Irrotational flow past a nonsymmetric Joukowski airfoil The second
example deals with a similar problem to the preceding symmetric case.we present
flow past a nonsymmetric Joukowski profile with zero angle of attack. Again, using
the complex function method we can obtain the exact solution in the case of a non-
symmetric Joukowski profile. The far field Mach number of is again M∞ = 0.0001.
Figure 2 shows a detail near the profile of the velocity isolines for the approximate
solution of compressible flow and for the exact solution of incompressible flow, re-
spectively. Figure 3 shows a comparison of the velocity distribution along the profile
surface for the computed and exact solution. The mesh was formed by 5418 trian-
gular elements.

Fig. 2: Velocity isolines for the approximate solution of compressible flow (left) and for
the exact solution of incompressible flow (right).

Fig. 3: Velocity distribution along the profile surface. ◦◦◦ – exact solution of incompress-
ible flow, —– – approximate solution of compressible flow.
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3) Transonic flow The performance of shock capturing terms from Section 4. is
tested on the GAMM channel with a 10% circular bump and the inlet Mach number
equal to 0.67. In this case a conspicuous shock wave is developed. Figure 4 shows
Mach number isolines and entropy isolines computed by the presented scheme. One
can see that this scheme yields the entropy production on the shock wave only,
which is correct from the physical point of view. The stabilization parameters in
were chosen ν1 = ν2 = 0.2. The mesh was formed by 7753 triangular elements.

Fig. 4: GAMM channel transonic flow, Mach number (top) and entropy (bottom) isolines.
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ARBITRARY LAGRANGIAN-EULERIAN (ALE) METHODS
IN COMPRESSIBLE FLUID DYNAMICS∗

Milan Kuchař́ık, Richard Liska, Pavel Váchal, Mikhail Shashkov

Abstract

The aim of this paper is to present an Arbitrary Lagrangian-Eulerian (ALE [1])
code for simulation of problems in compressible fluid dynamics and plasma physics
including heat conduction and laser absorption, in both Cartesian and cylindrical
geometries. Various techniques are utilized for mesh adaptation (rezoning), includ-
ing Winslow smoothing [2], three-step untangling [3] and Reference Jacobian
method [4, 5]. For conservative transfer (remapping) of variables onto the rezoned
mesh, linear interpolation with a posteriori repairs is used by default. Simulation of
high velocity impact, for which pure Lagrangian method fails, proves the usefulness
of ALE approach.

1. Introduction

The Arbitrary Lagrangian-Eulerian (ALE) method [1] is a popular tool for sim-
ulation of continuum mechanics problems with large shear deformation such as fluid
flow and metal forming. Compared to pure Eulerian methods, it is also better suited
for moving boundaries and large volume changes of the computational domain, ap-
pearing in simulations of laser-plasma interactions and inertial confinement fusion.

The ALE algorithm consists of a classical Lagrangian step in which the mesh
moves along with the modeled material, a rezone step in which the mesh is modified
to preserve good quality through the computation, and a remapping step in which
the solution is conservatively transferred from the old mesh to the new, rezoned
one. We present new efficient techniques for the rezoning and remapping stages of
the ALE framework and demonstrate some of their properties on a real physical
simulation of high velocity impact.

Note that by the ALE method we understand the variation of Lagrangian hy-
drodynamics which avoids Lagrangian mesh distortion (arising in some problems
involving e.g. shear flows) by rezoning and remapping. Another method, unfortu-
nately also called ALE, uses a mesh smoothly moving in a predefined way, typically
determined by moving boundaries rather than by fluid motion.

Details on implementation of particular procedures and on the physical back-
ground can be found in [6].

∗Part of this work was funded by the U.S. Department of Energy under contract W-7405-ENG-
36, the DOE Office for Science’s ASCR program in Applied Mathematical Sciences and the ASC
program. The first three authors have been partly supported by the Czech Science Foundation
GAČR 202/03/H162 and Czech Ministry of Education grants MSM 6840770010, MSM 6840770022
and LC528.
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2. The Lagrangian step

In pure Lagrangian computation, each mesh cell can be considered as a particle
of the fluid, so that the mesh moves along with the simulated problem, with no
mass flux between the cells. Euler equations for compressible fluid flow with heat
conductivity and laser absorption in Lagrangian coordinates read

1

ρ

d ρ

d t
= −∇ · ~v, ρ

d ~v

d t
= −∇p,

d ~x

d t
= ~v, (1a)

ρ
d ε

d t
= −p ∇ · ~v +∇ · (κ∇T )− Ca∇ · ~I , (1b)

where total Lagrangian time derivatives include convective terms: d
d t

= ∂
∂ t

+ ~v · ∇.
Scalar quantities (density ρ, pressure p, specific internal energy ε and temperature T )
are approximated in mesh cells, while vectors (position ~x and velocity ~v) are related
to the nodes. To complete the system, one has to supply also the equation of state
(EOS). For the ideal polytropic gas, the EOS is p = (γ − 1)ερ. For other materials,
more sophisticated formulas are advised, e.g. the Quotidian EOS [7]. The hyperbolic
Lagrangian system is numerically treated by compatible method [8, 9] conserving
total energy. Several types of artificial viscosity are incorporated into the difference
scheme, such as bulk viscosity, edge viscosity, etc. [6]. Laser absorption is taken into
account by the last term in the energy equation (1b).

The system is split into hyperbolic and parabolic parts. The parabolic part

d T

d t
−∇ · (κ∇T ) = 0

of the energy equation is solved separately by a scheme fully implicit in time, which
allows the choice of timestep equal to that of the hyperbolic system. A discretiza-
tion of operators div and grad by a mimetic method [10] leads to a system with
a symmetric and positive definite matrix, which is then solved by conjugate gradient
method.

3. Mesh adaptation (rezoning)

During the rezoning process, the quality of strongly deformed parts of the mesh
must be improved, so that the computation can continue with desired precision.
However, doing more changes than necessary could lead to loss of valuable simulation
information gathered so far. If the mesh is really strongly distorted, e.g. containing
the “hourglass-shaped” (./) quadrilateral cells, one first needs to untangle it, that
is to fix all the fully or partly inverted elements. An efficient method to do this is
the three-step algorithm [3], combining direct node placement based on geometrical
considerations with numerical optimization of a quadratic functional which serves
as a local mesh quality indicator. Another option is to prevent evolution of strong
deformations (tangling) by regular use of a less expensive rezoning technique, such
as the simple Winslow approach [2], where new node positions are given by
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~xk+1
i,j =

1

2 (αk + γk)


αk (~xk

i,j+1 + ~xk
i,j−1) + γk (~xk

i+1,j + ~xk
i−1,j)−

− 1

2
βk (~xk

i+1,j+1 − ~xk
i−1,j+1 + ~xk

i−1,j−1 − ~xk
i+1,j−1)


 (2)

with coefficients αk = x2
ξ + y2

ξ , βk = xξ xη + yξ yη, γk = x2
η + y2

η, where zξ, zη

denote finite differences in logical, index coordinates zξ = (zi+1,j − zi−1,j)/2, zη =
(zi,j+1−zi,j−1)/2. A more sophisticated method is based on the local parametrization
and optimization of the Reference Jacobian matrix [4, 5]. First, each node is assigned
a virtual reference position ~x(R) by optimization of a local mesh quality estimator
in its neighborhood. In particular, in N dimensions, for node V one minimizes the
functional

QV =
∑

T∈TV

‖JV,T‖ · ‖J−1
V,T‖,

which is a sum of condition numbers of the Jacobi mapping matrices

JV,T = [eV,1, eV,2, . . . , eV,N ]

given by edges eV,k = ~xk−~xV forming a virtual simplex in the N -dimensional space.
The sum is taken over all simplices T sharing node V as a vertex. Then, global
optimization is used to find a mesh of good quality, with edges as close as possible
to their reference counterparts. This is done by minimization of the functional

FRJ =
∑
V

∑
T∈TV

‖JV,T (x)− J(R)
V,T‖

‖J(R)
V,T‖ ,

where the sum is taken over all mesh vertices V and the reference Jacobian matrix
is defined as

J(R)
V,T =

[
e
(R)
V,1 , e

(R)
V,2 , . . . , e

(R)
V,N

]
, e

(R)
V,k = ~xk − ~x

(R)
V .

Both functionals are optimized using the conjugate gradient method, which is well
suited for problems with large number of parameters.

The input mesh for this procedure must not contain inverted elements (i.e. sim-
plices with negative volume in the sense of original orientation). Therefore, strongly
distorted meshes must be preprocessed by an untangling procedure, e.g. the three-
step method [3] mentioned above.

4. Conservative transfer of solution (remapping)

Once the mesh is adapted (rezoned), the discrete values of conserved variables
must be transferred (remapped) from the old mesh to this new, rezoned one. This
procedure is required to be conservative for mass, each component of momentum,
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and total energy and must preserve monotonicity (or at least local bounds) for den-
sity, velocity and specific internal energy. The remapping should be as accurate as
possible. Exact transfer from the old mesh to the new one is required for linear func-
tions. All this is achieved by a method which first interpolates discrete values by
a piecewise linear function, then integrates it over swept regions and finally corrects
the possibly created overshoots or undershoots by redistribution of these into the
neighboring cells (so-called Repair) [11, 12].

Other techniques enforce all imposed requirements already during the remap-
ping process, with no need of a posteriori repair. Many of them combine low-order
intercell fluxes (which preserve local bounds by default) with some portion of higher-
order (generally unconstrained) fluxes. An example called Flux-Corrected Remap-
ping (FCR) is described in [13].

5. Numerical example

As a practical example, we show a simulation inspired by an experiment per-
formed recently at the Prague Asterix Laser System (PALS) facility: a laser-irradiated
aluminum disc ablatively accelerates and strikes a massive aluminum target [14, 15].
Here we focus on the second part, that is on disc impact. The setup is as in Fig. 1(a)
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Fig. 1: Disc impact problem. Experiment setup (a) and temperature at 80 ns: whole
domain with hot plasma corona (b), detail of crater evolving in the target (c). Only every
fourth layer of edges is shown in (c). Solid, liquid and gas phases are shown in separate
colormaps.
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with the following parameters: a 400 ps laser pulse with energy 240 J operating in the
3rd harmonic with radius of focal spot on target rf = 125 µm, irradiates a d = 11 µm
thick disc with radius r = 150 µm, located L = 200 µm above the target. The disc
is ablatively accelerated up to the impact velocity vimp = 134 km/s and hits the tar-
get. Simulation starts at the moment of impact. Pure Lagrangian computation fails
very soon (at approximately t ≈ 0.5 ns) because of fatal mesh distortion, while the
ALE simulation preserves sufficient mesh quality for the computation to continue.
In particular, EOS for ideal gas was used, mesh rezoning was performed by Winslow
smoothing (2) and remapping by linear interpolation with Repair. The flyer starts to
sink into the target, material of both the flyer and the target are compressed, heated
and evaporated. Part of the hot material is ionized, ablated and forms an expanding
plasma corona, shown at t = 80 ns in Fig. 1(b). Shock wave is propagating into the
target, continuing to melt and evaporate its material, see Fig. 1(c), where only every
fourth mesh edge in each direction is shown, so that each quadrilateral corresponds
to sixteen real cells. Solid, liquid and gas phases are shown by different colormaps
in grayscale. In all performed tests, size and shape of the crater approximated the
experimental data with reasonable precision.
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SOLUTION OF TIME-DEPENDENT CONVECTION-DIFFUSION
EQUATIONS WITH THE AID OF HIGHER ORDER ADAPTIVE

METHODS WITH RESPECT TO SPACE AND TIME∗

Pavel Kůs, Vı́t Doleǰśı

1. Introduction

This work deals with the solution of a scalar nonlinear convection–diffusion equa-
tion which is a model problem for a numerical simulation of viscous compressible
flows. A semi-discretization with respect to the space coordinates, which is carried
out with the aid of the discontinuous Galerkin method, yields a system of ordinary
differential equations (ODE). Our aim is to develop and implement an efficient adap-
tive numerical scheme for the solution of this ODE system. We derive two stable
multi-step methods of the same order of accuracy and from a difference of both ap-
proximate solutions, we estimate a local discretization error with respect to the time.
Then we choose the time step in such a way, that local error is approximately equal
to a given tolerance. Several numerical simulations were carried out to demonstrate
the efficiency of the method.

2. Discontinuous Galerkin method

We consider the following unsteady nonlinear convection–diffusion problem: Find
u : QT → IR such that

∂u

∂t
+

d∑
s=1

∂fs(u)

∂xs

= ε ∆u + g in QT , (1)

u
∣∣
∂Ω×(0,T ) = uD, (2)

u(x, 0) = u0(x), x ∈ Ω. (3)

Similarly as in the finite element method, we introduce a weak solution u of the
problem

d

dt
(u(t), v) + b(u(t), v) + a(u(t), v) = (g(t), v) ∀v ∈ H1

0 (Ω), (4)

∗This work is a part of the research project MSM 0021620839 financed by the Ministry of Edu-
cation of the Czech Republic and was partly supported by the Grant No. 316/2006/B-MAT/MFF
of the Grant Agency of Charles University Prague.
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where (·, ·) denotes the L2-scalar product, a(·, ·) is a linear form representing the
diffusive term and b(·, ·) is a nonlinear form representing the convective term. We
also consider appropriate representation of initial and boundary conditions. As in
the classical finite element method we use triangulation of domain Ω and a piecewise
polynomial discontinuous approximation. More general, even non-convex elements
with the hanging nodes are allowed. The approximate solution is sought in a space of
piecewise polynomial but discontinuous functions Sh. In order to replace the inter-
element continuity, we add some stabilization terms into formulation of a discrete
problem. The convective term is approximated with the aid of a numerical flux,
known from the finite volume method. We receive the space semidiscretization

(
∂uh(t)

∂t
, ϕh

)
+ bh(uh(t), ϕh) + ah(uh(t), ϕh) = 0 ∀ϕh ∈ Sh, (5)

where ah(·, ·) and bh(·, ·) are the discrete variants of the forms a(·, ·) and b(·, ·),
respectively. For more details, see [1], [2]. The relation (5) represents a system of
ordinary differential equations, which must be solved by a suitable method.

3. BDF2 method

The system (5) is stiff, so we have to use an implicit method, such as backward
difference formulae (BDF). In contrast to [4] where a combination of explicit and
implicit schemes was employed we introduce two implicit schemes of the same order
of accuracy. Using this pair of methods, we obtain two solutions and from their
difference we estimate the local discretization error.

3.1. Derivation of the method

Now we shall briefly describe derivation of two n-step methods BDF2a and
BDF2b for solution of a system of ordinary differential equations with an unknown
function y : (0, T ) → IRm.

dy(t)

dt
= F (t, y), y(0) = y0 , (6)

where y0 ∈ IRm and F : (0, T ) × IRm → IRm. Let us denote by 0 = t0 < t1 <
t2 < · · · < tr = T the partition of the interval (0, T ), τk ≡ tk − tk−1, k = 1, . . . , r,
θk = τk/τk−1, k = 1, . . . , r. Moreover, let yk denote approximate value of solution
y(tk), k = 0, . . . , r.

First method is derived from the Taylor formula in tk. We express values of
solution in tk−1,. . . ,tk−n. When we neglect higher order terms, we obtain a sys-
tem of n equations with unknown approximate solutions yk,. . . ,yk−n and derivatives
y′(tk),. . . ,y(n)(tk). By eliminating higher order derivatives we obtain method BDF2a :

n∑
i=0

αiyn−i = τkFk (7)
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The second method can be derived similarly from the Taylor formula in tk−1

n∑
i=0

ᾱiȳn−i = τkFk−1. (8)

This method is explicit and therefore not suitable for the solution of stiff problems.
So we define the method BDF2b as a linear combination of schemes (7) and (8) by

n∑
i=0

α̂iŷn−i = γ̂0τkFk + γ̂1τkFk−1. (9)

3.2. Error estimation

From the Taylor formula we also get an estimation of the local discretization error
for the BDF2a and BDF2b methods in the form

ek ≡ y(tk)− yk ≈ f1(τk, . . . , τk−n+1)y
(n+1)(tk), (10)

êk ≡ y(tk)− ŷk ≈ f2(τk, . . . , τk−n+1)y
(n+1)(tk−1).

Now let us assume that yn+1(tk) ≈ yn+1(tk−1). From (10) we eliminate the term
yn+1(·) and after substituton we obtain a computable expression for the local dis-
cretization error depending on both approximate solutions only. Therefore we have

ek ≈ δ(yk − ŷk), (11)

êk ≈ δ̂(yk − ŷk). (12)

We can also combine our two solutions to obtain final solution of a higher order of
accuracy by

y̆k = δ̂yk − δŷk, (13)

whose order of convergence is equal to n + 1. In [3], we computed coefficients for
n = 1, 2, 3 and verified stability of the proposed methods.

4. Full space–time discretization

By a direct application of an implicit method to the semi-discrete problem (5),
we obtain a system of nonlinear algebraic equations at each time step, which is
expensive to solve. Therefore we use a semi–implicit approach, where the linear
terms are treated implicitly, whereas the nonlinear ones explicitly. For the nonlinear
terms we employ an explicit higher order extrapolation. Then we obtain the scheme

1

τk

(
n∑

l=0

αlu
k−l
h , vh

)
+ γ0ah(u

k
h, vh) + γ0bh

(
n∑

l=1

βlu
k−l
h , vh

)

+ γ1ah(u
k−1
h , vh) + γ1bh(u

k−1
h , vh) = 0 ∀ vh ∈ Sh . (14)
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5. Adaptive choice of time step

An important feature of modern numerical algorithms is the adaptivity, i.e., their
ability to estimate the local discretization error during execution and adapt a time
step in such a way, that the local discretization error is under a given tolerance.
Thus, at each time step, we estimate the local discretization error and on the basis
of this estimation we choose the next time step. In order to ensure an efficiency of
the method the local discretization error at each time step should be approximately
equal to the given tolerance TOL. Let us denote by EST the estimate of the local
error. Since the order of convergence of the method is equal to n + 1, we have

EST = Cτn+1
k . (15)

We want to find a time step τ̄k such that

TOL = Cτ̄n+1
k . (16)

Therefore we define the next time step by

τ̄k = τk
n+1

√
TOL

EST
. (17)

If EST is much larger than TOL, we reject the last time step and compute it again
using τ̄k instead of τk. Otherwise we accept the last time step and compute the next
one using τk+1 := τ̄k.

6. Numerical results

6.1. Orders of convergence

We investigate the experimental orders of convergence of the presented numerical
schemes. We carried out numerical experiments for an ordinary differential equation
having the exact solution in the form

y =
eαt − 1

eα − 1
(18)

on interval t ∈ [0, 1] with α = 500. The following table contains the computa-
tional errors for the one, two, and three-step BDF and the corresponding orders of
convergence.

n 10−2 10−3 10−4 10−5 order

1 1.53× 100 2.07× 10−2 2.08× 10−4 2.08× 10−6 1.96
2 1.04× 100 3.20× 10−3 3.45× 10−6 3.47× 10−9 2.84
3 8.06× 10−1 6.31× 10−4 7.65× 10−8 1.23× 10−11 3.64

We observe the order of convergence n+1 since we used a combination of two different
methods of order n. However, this procedure can not be used in case of the scalar
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convection-diffusion equation. Not only we do not obtain more accurate solution,
but combination of two solutions of order n is even worse. So we have to use one of
our two methods of order n.

Further we consider the scalar convection–diffusion equation (1) with the exact
solution

ū = x(1− x)y(1− y)
eαt − 1

eα − 1
(19)

on [0, 1]× [0, 1] and time interval t ∈ [0, 1]. The computational errors and the order
of convergence are shown in the following table.

10−1 5× 10−2 10−2 5× 10−3 order

n = 1 3.18× 10−1 1.48× 10−1 2.74× 10−2 1.34× 10−2 1.05
n = 2 1.14× 10−1 3.49× 10−2 1.42× 10−3 2.63× 10−4 2.02
n = 3 8.15× 10−2 1.05× 10−2 2.58× 10−4 9.31× 10−5 2.28

We observe, that the numerical order of convergence in this case is approximately n
and it corresponds to the expected one. However, for the case n = 3, the order is
2.28 only, which is caused by the fact that the solution depends on both time and
space discretization and its order of convergence is O(hp + τn). Hence, if τn is so
small that hp has nonnegligible influence then further increase of order of accuracy
in time has no effect.

6.2. Efficiency of the adaptive strategy

In this section we compare the efficiency of the methods using a constant and
adaptive time step. We compared how many time steps are needed to obtain solution
with prescribed accuracy.

6.2.1. Ordinary differential equations

First we carried out experiments for the ordinary differential equation with the
exact solution (18). The following table shows the numbers of time steps necessary
to obtain solution with errors 10−2 to 10−6.

10−2 10−3 10−4 10−5 10−6

n = 1 1375 4474 14365 45790 143641
constant n = 2 642 1425 3197 6972 15110

n = 3 410 855 1586 2879 5222

n = 1 34 81 241 965 2520
adaptive n = 2 26 36 65 145 266

n = 3 24 29 43 70 108

We observe that the adaptive method is more effective. The differential equation is
chosen in such a way, that the exact solution is almost constant in the major part of
the interval. However, at the end of the interval the solution grows very steeply. So
the major part of the interval can be done with few steps, which adaptive method
allows. The following figure shows the lengths of time steps with respect to the time.
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We observe that the time step is quite long at the beginning of the interval, while
at the end it is shortening rapidly.

6.2.2. Scalar convection–diffusion equations

Further we consider the scalar equation (1) with the exact solution in the form (19).
The numbers of iterations, which are needed to obtain solution with errors 10−1,
10−2 and 10−3, are in the following table, which verifies the efficiency of the adaptive
strategy.

10−1 10−2 10−3

n = 1 7 98 > 10000
constant n = 2 5 27 > 10000

n = 3 4 18 8973

n = 1 9 29 1335
adaptive n = 2 6 11 650

n = 3 5 9 321
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INTERIOR-POINT METHOD FOR LARGE-SCALE l1
OPTIMIZATION∗

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Consider the l1 optimization problem: Minimize function

F (x) =
m∑

i=1

|fi(x)|, (1)

where fi : Rn → R, 0 ≤ i ≤ m (m is usually large), are smooth functions depending
on a small number of variables. We will assume that these functions are twice contin-
uously differentiable with bounded first and second-order derivatives in a sufficiently
large region D.

Minimization of F is equivalent to the sparse nonlinear programming problem
with n + m variables x ∈ Rn, z ∈ Rm:

minimize
m∑

i=1

zi subject to − zi ≤ fi(x) ≤ zi, 1 ≤ i ≤ m. (2)

In this contribution, we introduce a trust-region interior-point method for nonconvex
nonlinear programming that utilizes a special structure of problem (2). All theoret-
ical results are given without proofs. These proofs can be found in [5].

The constrained problem (2) is replaced by a sequence of unconstrained problems

minimize B(x, z; µ) =
m∑

i=1

zi − µ
m∑

i=1

log(zi − fi(x))− µ
m∑

i=1

log(zi + fi(x))

=
m∑

i=1

zi − µ
m∑

i=1

log(z2
i − f 2

i (x)), (3)

where zi > |fi(x)|, 1 ≤ i ≤ m, and µ > 0 (we assume that µ → 0 monotonically).
Barrier function (3) remains unchanged if we replace problem (2) by equivalent
problem

minimize
m∑

i=1

zi subject to f 2
i (x) ≤ z2

i , 1 ≤ i ≤ m. (4)

The necessary first-order (KKT) conditions for the solution of (4) have the form

m∑

i=1

2wifi(x)∇fi(x) = 0, 2wizi = 1, wi ≥ 0, wi(z
2
i − f 2

i (x)) = 0, 1 ≤ i ≤ m,

(5)

∗This work was supported by the Grant Agency of the Czech Academy of Sciences, project
No. IAA1030405 and the institutional research plan No. AV0Z10300504
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where wi, 1 ≤ i ≤ m, are Lagrange multipliers. Since zi = |fi(x)|, 1 ≤ i ≤ m, at the
solution of (4), we can write (5) in a simpler equivalent form

m∑

i=1

ui∇fi(x) = 0,
uizi

fi(x)
= 1, z2

i − f 2
i (x) = 0, 1 ≤ i ≤ m, (6)

where ui = 2wifi(x) for 1 ≤ i ≤ m.
The special structure of problem (3) allows us to obtain minimizer z(x; µ) ∈ Rm

of function B(x, z; µ) for a given x ∈ Rn.

Lemma 1. Function B(x, z; µ) (with x fixed) has the unique stationary point, which
is its global minimizer. This stationary point is characterized by equations

2µzi(x; µ)

z2
i (x; µ)− f 2

i (x)
= 1 or z2

i (x; µ)− f 2
i (x) = 2µzi(x; µ), 1 ≤ i ≤ m, (7)

which have solutions

zi(x; µ) = µ +
√

µ2 + f 2
i (x), 1 ≤ i ≤ m. (8)

Assuming z = z(x; µ), we denote

B(x; µ) =
m∑

i=1

zi(x; µ)− µ
m∑

i=1

log(z2
i (x; µ)− f 2

i (x)) (9)

and u(x; µ) = u(x, z(x; µ); µ). In this case, barrier function B(x; µ) depends only
on x.

Lemma 2. Consider barrier function (9). Then

∇B(x; µ) = g(x; µ), (10)

where g(x; µ) = A(x)u(x; µ) =
∑m

i=1∇fi(x)ui(x; µ) with

ui(x; µ) =
2µfi(x)

z2
i − f 2

i (x)
, 1 ≤ i ≤ m, (11)

and
∇2B(x; µ) = G(x; µ) + A(x)V (x; µ)AT (x), (12)

where

G(x; µ) =
m∑

i=1

ui(x; µ)Gi(x) (13)

with Gi(x) = ∇2fi(x), 1 ≤ i ≤ m, and V (x; µ) = diag(v1(x; µ), . . . , vm(x; µ)) with

vi(x; µ) =
2µ

z2
i (x; µ) + f 2

i (x)
, 1 ≤ i ≤ m. (14)
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Lemma 3. Let ∇2B(x; µ)d = −∇B(x; µ). If matrix G(x; µ) is positive definite, then
dT g(x; µ) < 0 (direction vector d is descent for B(x; µ)).

Since positive definiteness of matrix G(x; µ) is not assured, the standard line-
search methods cannot be used. For this reason, trust-region methods were devel-
oped. These methods use the direction vector obtained as an approximate minimizer
of the quadratic subproblem

minimize Q(d) =
1

2
dT∇2B(x; µ)d + gT (x; µ)d subject to ‖d‖ ≤ ∆, (15)

where ∆ is the trust region radius. Direction vector d serves for obtaining new point
x+ ∈ Rn. Denoting

ρ(d) =
B(x + d; µ)−B(x; µ)

Q(d)
, (16)

we set
x+ = x if ρ(d) ≤ 0, or x+ = x + d if ρ(d) > 0. (17)

Finally, we update the trust region radius in such a way that

∆+ = β∆ if ρ(d) < ρ,

∆+ = ∆ if ρ ≤ ρ(d) ≤ ρ, (18)

∆+ = β∆ if ρ < ρ(d),

where 0 < ρ < ρ < 1 and 0 < β < 1 < β.
Now we are in a position to describe the basic algorithm.

Algorithm 1.

Data: Termination parameter ε > 0, minimum value of the barrier parameter
µ > 0, rate of the barrier parameter decrease 0 < τ < 1, trust-region

parameters 0 < ρ < ρ < 1, trust-region coefficients 0 < β < 1 < β, step

bound ∆ > 0.

Input: Sparsity pattern of matrix A. Initial estimation of vector x.

Step 1: Initiation. Choose initial barrier parameter µ > 0 and initial trust-region
radius 0 < ∆ ≤ ∆. Determine the sparsity pattern of matrix ∇2B from
the sparsity pattern of matrix A. Carry out symbolic decomposition of
∇2B. Compute values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|. Set

k := 0 (iteration count).

Step 2: Termination. Determine vector z(x; µ) by (8) and vector u(x; µ) by (11).
Compute matrix A(x) and vector g(x; µ) = A(x)u(x; µ). If µ ≤ µ and
‖g(x; µ)‖ ≤ ε, then terminate the computation. Otherwise set k := k+1.

Step 3: Approximation of the Hessian matrix. Compute approximation of matrix
G(x; µ) by using differences A(x + δv)u(x; µ)− g(x; µ) for a suitable set
of vectors v (see [1]). Determine Hessian matrix ∇2B(x; µ) by (12).
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Step 4: Direction determination. Determine vector d as an approximate solution
of trust-region subproblem (15).

Step 5: Step-length selection. Determine x+ by (17) and set x := x+. Compute
values fi(x), 1 ≤ i ≤ m, and F (x) =

∑
1≤i≤m |fi(x)|.

Step 6: Trust-region update. Determine new trust-region radius ∆ by (18) and
set ∆ := min(∆, ∆).

Step 7: Barrier parameter update. If ρ(d) ≥ ρ (where ρ(d) is given by (16)),
determine a new value of barrier parameter µ ≥ µ (not greater than the
current one) by the procedure described below. Go to Step 2.

The use of the maximum step-length ∆ has no theoretical significance but is very
useful for practical computations. First, the problem functions can sometimes be
evaluated only in a relatively small region (if they contain exponentials) so that the
maximum step-length is necessary. Secondly, the problem can be very ill-conditioned
far from the solution point, thus large steps are unsuitable. Finally, if the problem
has more local solutions, a suitably chosen maximum step-length can cause a local
solution with a lower value of F to be reached. Therefore, maximum step-length ∆
is a parameter, which is most frequently tuned.

Direction vector d ∈ Rn should be a solution of the quadratic subproblem (15).
Usually, an inexact approximate solution suffices. The dog-leg method described
in [6], [2], seeks d as a linear combination of the Cauchy step dC = −(gT g/gT∇2Bg)g
and the Newton step dN = −(∇2B)−1g. The Newton step is computed by using ei-
ther sparse Gill-Murray decomposition [4] or sparse Bunch-Parlett decomposition [3].
The sparse Gill-Murray decomposition has the form ∇2B + E = LDLT = RT R,
where E is a positive semidefinite diagonal matrix (which is equal to zero when
∇2B is positive definite), L is a lower triangular matrix, D is a positive definite
diagonal matrix and R is an upper triangular matrix. The sparse Bunch-Parlett de-
composition has the form ∇2B = PLMLT P T , where P is a permutation matrix, L is
a lower triangular matrix and M is a block-diagonal matrix with 1×1 or 2×2 blocks
(which is indefinite when ∇2B is indefinite). The following algorithm is a typical
implementation of the dog-leg method.

Algorithm A: Data ∆ > 0.

Step 1: If gT∇2Bg ≤ 0, set s := −(∆/‖g‖)g and terminate the computation.

Step 2: Compute the Cauchy step dC = −(gT g/gT∇2Bg)g. If ‖dC‖ ≥ ∆, set
d := (∆/‖dC‖)dC and terminate the computation.

Step 3: Compute the Newton step dN = −(∇2B)−1g. If (dN − dC)T dC ≥ 0 and
‖dN‖ ≤ ∆, set d := dN and terminate the computation.

Step 4: If (dN − dC)T dC ≥ 0 and ‖dN‖ > ∆, determine number θ in such a way
that dT

CdC/dT
CdN ≤ θ ≤ 1, choose α > 0 such that ‖dC +α(θdN − dC)‖ =

∆, set d := dC + α(θdN − dC) and terminate the computation.
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Step 5: If (dN − dC)T dC < 0, choose α > 0 such that ‖dC + α(dC − dN)‖ = ∆,
set d := dC + α(dC − dN) and terminate the computation.

The above algorithm generates direction vectors such that

‖d‖ ≤ ∆,

‖d‖ < ∆ ⇒ ∇2Bd = −g,

−Q(d) ≥ σ‖g‖min

(
∆,

‖g‖
‖∇2B‖

)
,

where 0 < σ < 1 is a constant. These inequalities imply (see [7]), that a constant
0 < c < 1 exists such that

‖d‖ ≥ cγ/B, (19)

where γ is the minimum norm of gradients that have been computed and B is an
upper bound for ‖∇2B‖ (assuming µ ≥ µ > 0, we can set B = m(G + g2/(2µ))).
Thus

B(x + d; µ)−B(x; µ) ≤ ρQ(d) ≤ −ρ σ c
γ2

B
if ρ ≥ ρ (20)

by (17) and (19).
Algorithm 1 is sensitive on the way in which the barrier parameter decreases.

We have tested various possibilities for the barrier parameter update including sim-
ple geometric sequences, which were proved to be unsuitable. Better results were
obtained by setting

µk+1 = µk if ‖gk‖2 > τµk or µk+1 = max(µ, ‖gk‖2) if ‖gk‖2 ≤ τµk, (21)

where 0 < τ < 1.
In the subsequent considerations, we will assume that ε = µ = 0 and all compu-

tations are exact.

Lemma 4. Let Assumption 3 be satisfied. Then values {µk}∞1 , generated by Algo-
rithm 1, form a non-increasing sequence such that µk → 0.

Lemma 5. The inequality

B(xk+1; µk+1) ≤ B(xk+1; µk)− L(µk+1 − µk) (22)

holds with some L ∈ R.

Theorem 1. Consider sequence {xk}∞1 , generated by Algorithm 1. Then

lim inf
k→∞

m∑

i=1

ui(xk; µk)gi(xk) = 0

and

ui(xk; µk) =
fi(xk)

zi(xk; µk)
, lim

k→∞
(z2

i (xk; µk)− f 2
i (xk)) = 0

for 1 ≤ i ≤ m.
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Remark 1. If we replace (17) by

x+ = x if ρ(d) < ρ, or x+ = x + d if ρ(d) ≥ ρ (23)

in Algorithm 1, then limk→∞ ‖g(xk; µk)‖ = 0.

Corollary 1. Let assumptions of Theorem 1 and (23) hold. Then every cluster point
x ∈ Rn of sequence {xk}∞1 satisfies KKT conditions (6), where u ∈ Rm is a cluster
point of sequence {u(xk; µk)}∞1 .

The efficiency of Algorithm 1 was tested by using extensive collections of test
problems. The results are given in [5].
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THE APPLICATION OF THE THERMAL BALANCE METHOD
FOR COMPUTATION OF WARMING IN ELECTRIC MACHINES∗

Jaroslav Mlýnek

Abstract
The paper describes the procedure of the thermal balance method implementation

for the computation of warming in electrical machines. Our effort will be focused on
the temperature distribution in transformer screening under a stationary load. Since
the three-dimensional problem is axially symmetric, it will be reduced by means of
the cylindrical coordinates to an elliptic partial differential equation of second order
with the Newton boundary conditions on a rectangular domain. Results of numerical
tests are presented as well.

1. Introduction

Heat energy is being accumulated in an electrical machine during its operation.
Thus, the temperature increase in its different parts depends on the accumulated
heat energy. The electrical machine operating temperature is an important feature of
a proper functioning and lifespan. The highest (and often also the lowest) operating
temperature is prescribed for most of machine components.

These requirements could be reached by limiting the ambient temperature, at
which the machine works in and by preventing machine parts warming over specified
allowable limits. One of the most effective approaches for solving these problems is
the description of spreading heat in electrical machines by means of a mathematical
model, which is subsequently investigated. At present, mathematical models are of-
ten solved by using a variational formulation (see e.g. [3] and [4]). A one-dimensional
problem of heat conduction is solved in [5]. This contribution is focused on the com-
putation of warming of a transformer container screening at a stationary load by
means of the thermal balance method.

2. Problem definition

Transformer screening is considered in the form of a thin-wall cylinder and the tem-
perature field is supposed to be rotationally symmetric. Therefore, the warming
computation problem can be solved in screening cross section on a two-dimensional
closed domain Ω (R1 ≤ r ≤ R2, Z1 ≤ z ≤ Z2, see Fig. 1).

The temperature field is described by the elliptic partial differential equation
of second order (see [3, p. 221])

λr

(
∂2ϑ(r, z)

∂r2
+

1

r

∂ϑ(r, z)

∂r

)
+ λz

∂2ϑ(r, z)

∂z2
= −q(r, z) (1)

∗Technical University of Liberec Internal Grant IGS 5130/1 supported this contribution.
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Fig. 1: Cross section of the transformer screening.

with the Newton boundary conditions

λr
∂ϑ(r, z)

∂r
+ αL,P (ϑ(r, z)− u(z)) = 0 (2)

on vertical parts of boundary of Ω and

λz
∂ϑ(r, z)

∂z
+ αH,D (ϑ(r, z)− u(z)) = 0 (3)

on horizontal parts for appropriate values of r and z. Real values λr and λz stand for
heat conductivities of the material in the r-axis and z-axis directions, respectively;
the true solution ϑ(r, z) denotes screening temperature rise with respect to the sur-
rounding oil temperature. The function u(z) in expressions (2) and (3) allows to
respect the variable temperature of oil in the vicinity of screening in the z-axis direc-
tion. It is given by the formula u(z) = Cz, where C is constant. In expression (1),
the function q(r, z) represents the volume density of losses, which is expressed by the
following relation:

q(r, z) = δ2(z)ρ(1 + αT ϑ(r, z)), (4)

where δ(z) denotes the density of eddy currents, ρ is the specific resistance of the ma-
terial used for screening, and αT is the factor for the dependence of a specific resis-
tance on temperature. In boundary conditions (2) and (3), the constants αL, αP ,
αH , and αD stand for the heat transfer coefficients on the left, right, upper, and
lower parts of the rectangular domain Ω, respectively.

3. Solving the problem by means of the thermal balance method

Equation (1) can be transformed to a self-adjoint form and after the substitution
of the function q(z) from expression (4), the basic equation will be obtained. It
describes warming in the cross section Ω of transformer screening:
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∂

∂r

(
λrr

∂ϑ(r, z)

∂r

)
+ r

∂

∂z

(
λz

∂ϑ(r, z)

∂z

)
= −rδ2(z)ρ(1 + αT ϑ(r, z)) (5)

with boundary conditions (2) and (3).
In the domain Ω, a regular rectangular mesh will be constructed with increments

hr =
R2 −R1

m
and hz =

Z2 − Z1

n

in the r-axis and z-axis directions, respectively, where m and n denotes the number
of segments, to which the region is divided in the r-axis and z-axis directions, respec-
tively. Let us denote rk = R1 + khr, zs = Z1 + shz, and ϑk,s = ϑ(rk, zs) the warming
at the node [rk, zs], where k ∈ {0, 1, ..., m}, s ∈ {0, 1, ..., n}.

Let the point [rk, zs] be an internal node in the domain Ω (see Fig. 2). Then
equation (5) can be approximated at this node using the following balance of heat:

λr

(
rk +

hr

2

)
ϑk+1,s − ϑk,s

hr

hz + λr

(
rk − hr

2

)
ϑk−1,s − ϑk,s

hr

hz+

+ λzrk
ϑk,s+1 − ϑk,s

hz

hr + λzrk
ϑk,s−1 − ϑk,s

hz

hr = −rkδ
2(zs)ρ(1 + αT ϑk,s)hrhz. (6)

The left-hand side of equation (6) describes the approximate quantity of heat sup-
plied from or delivered to surrounding mesh nodes, the right-hand side expresses
approximate waste heat arising in the element that pertains to the node [rk, zs].

Fig. 2: The neighborhood of the point [rk, zs].

Fig. 2 shows four parts (I, II, III, and IV) of a square neighborhood of a node
[rk, zs]. Clearly, if the node lies on the boundary of Ω or at the corner then the
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neighborhood consists of two or one part, only. For the boundary nodes, boundary
conditions (2) or (3) will be used to determine the thermal balances. For instance, as
long as the neighborhood of the boundary point [rk, zs] consists of parts III and IV
only, we obtain by means of thermal balances the following equation:

λr

(
rk +

hr

2

)
ϑk+1,s − ϑk,s

hr

hz

2
+ λr

(
rk − hr

2

)
ϑk−1,s − ϑk,s

hr

hz

2
+

+ λzrk
ϑk,s−1 − ϑk,s

hz

hr − αHrk (ϑk,s − u(zs)) hr = −rkδ
2(zs)ρ(1 + αT ϑk,s)hr

hz

2
. (7)

Let us set h = max(hr, hz). Then we make the O(h2)-order error by approximat-
ing equation (5) in the internal node [rk, zs], since central differences are used. In
boundary nodes we make the O(h)-order error in the approximation (see [2, p. 277]),
because the difference

λzrk
ϑk,s+1 − ϑk,s

hz

,

for example, is substituted in equation (7) by the expression

−αHrk(ϑk,s − u(zs))

from relation (3). This low accuracy is quite sufficient in our case, since all physical
constants suffer from large uncertainties. By equations of type (6) and (7) in all
mesh points, we obtain a system of linear algebraic equations with a band symmetric
and positive definite matrix (for practically used values of physical quantities from
equations (1), (2), and (3)). The Choleski decomposition algorithm (see [1]) was
used to solve the associated system.

4. One-dimensional problem of heat conduction

For a one-dimensional heat conduction, an analytical solution can be determined
and compared with an approximate solution obtained by means of the thermal bal-
ance method. Let us examine the case, when a one-dimensional heat conduction is
considered in the r-axis direction. The heat transfer coefficient is nonzero only on
the vertical part of the boundary of Ω (i.e. αL = 0, αP 6= 0), the current density δ
is constant, and αT = 0. Then, equation (1) attains a simple form:

λr

(
∂2ϑ(r)

∂r2
+

1

r

∂ϑ(r)

∂r

)
= −q, (8)

where q = δ2ρ.
For the solution ϑ of problem (8) in the interior point r we have:

ϑr = X

{
2λr

αP R2

Y + 1−
(

r

R2

)2

− 2

(
R1

R2

)2

ln
R2

r

}
. (9)
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The temperature at boundary nodes is given by:

ϑR1 = X

{(
2λr

αP R2

+ 1

)
Y − 2

(
R1

R2

)2

ln
R2

R1

}
, (10)

ϑR2 = ϑR1 + q
R2

1

4λr

[
2 ln

R2

R1

+ 1−
(

R2

R1

)2
]

, (11)

where

X = q
R2

2

4λr

, Y = 1−
(

R1

R2

)2

.

The proof of relations (9)–(11) is based on the transformation of equation (8) to
the form

∂

∂r

(
r
∂ϑ

∂r

)
= −qr

λr

,

repeatedly using the integration with respect to r and applying the conditions αP 6= 0
and αL = 0.

Table 1 lists approximate values of temperature rise computed numerically by
means of the thermal balance method and the values obtained through analytical
formulae (9)–(11) for the following input values: q = 105 W/m3, R1 = 1m, R2 =
1.1m, αP = 50 W/m2K, αL = αH = αD = 0, and λr = 1 W/mK.

hr[m] ϑR1 [K] ϑr[K] ϑR[K]
R1 = 1[m] r = 1.05[m] R2 = 1.1[m]

approx. exact approx. exact approx. exact
0.05 673.33

675.37
551.37

552.41
190.91

190.880.025 674.88 552.15 190.91
0.0167 675.17 552.29 190.91

Tab. 1: One-dimensional heat transfer, the comparison of the exact and approximate
values of warming.

5. Numerical example

By means of the above mentioned thermal balance method, the real-live problem
was solved that involved finding the warming in aluminium transformer screening
with the following input parameters: R1 = 0.86m, R2 = 0.868m, Z1 = 0.8864m,
Z2 = 2.51m, λr = λz = 220W/mK, ρ = 0.3 × 10−7Ωm, αL = αP = αH =
αD = 50W/m2K, αT = 0.00409K−1, C = 10K/m (C is the costant appearing
in the definition of the function u(z) in expressions (2) and (3) in Section 2). The
domain Ω is divided into 2 segments (hr = 0.4 × 10−2 m) in the r-axis direction
and subsequently to 16, 32 and 64 segments (hz = 0.10148m, hz = 0.050738m,
hz = 0.025369m) in the z-axis direction. The current density δ(z) is given by means
of 19 values between 0.2498× 105 Am−2 and 0.3508× 107 Am−2, the current density
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R1 = 0.86 r = 0.864 R2 = 0.868
[m] [m] [m]

Z2 = 2.51 [m]
hz = 0.101480 [m] 35.790 35.795 35.790
hz = 0.050738 [m] 30.908 30.911 30.908
hz = 0.025369 [m] 29.444 29.446 29.444

z = 1.6982 [m]
hz = 0.101480 [m] 19.481 19.482 19.481
hz = 0.050738 [m] 19.467 19.468 19.467
hz = 0.025369 [m] 19.466 19.467 19.466

Z1 = 0.8864 [m]
hz = 0.101480 [m] 12.607 12.609 12.607
hz = 0.050738 [m] 12.764 12.765 12.764
hz = 0.025369 [m] 12.809 12.811 12.809

Tab. 2: The screening temperature rise (in K) for selected nodes at hr = 0.004 [m].

at the other node points is computed by means of linear interpolation. Table 2 lists
approximate values of temperature rise ϑk,s (at chosen nodes) computed numerically
using the thermal balance method.

6. Conclusion

The problem (1)–(3) for specific values of transformer screening was solved by
means of the above mentioned thermal balance method. The described method
of solving is relatively simple, but still allows to obtain an approximate solution,
which is sufficiently exact in technical practice. In numerical calculations of warming
in transformer screening, the domain Ω was divided only to 2 segments in the r-
axis direction (in view of the thin-wall cylindrical area of screening). The value
of the increment hz = 0.05m in the z-axis direction was sufficient. The described
procedure can be used for the examination of transformer parts at various load levels
during the development of transformer designs.
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WHY ARE THE MESHLESS METHODS USED?

Vratislava Mošová

1. A bit about meshless methods

Meshless (or meshfree) methods are a useful tool for solving partial differential
equations. These methods are often compared with the Finite Element Methods. The
FEM are essentially applications of the Galerkin method to the weak formulation
of a given problem and use spline spaces as approximating subspaces. The basic
difference between the FEM and the meshless methods consists in the construction
of the approximating space. In the meshless methods, this space is formed by shape
functions. The following property plays a fundamental role in construction of these
functions.

Definition 1 Let x1, x2, . . . , xN be arbitrarily spaced points (called particles) in
the domain Ω ⊂ Rn. The functions {ΨI}N

i=1 that are defined on Ω form the partition
of unity of s consistency if for every monomial p(x) ∈ Ps

N∑
I=1

ΨI(x)p(xI) = p(x) ∀x ∈ Ω. (1)

Different meshless methods construct the partition of unity in different ways.
Shape functions in Smooth Particle Hydrodynamic Method (SPHM, see [10]), Re-
producing Kernel Particle Method (RKPM, see [4], [5]), and Reproducing Kernel
Hierarchical Partition of Unity Method (RKHPUM, see [9]) are derived to repro-
duce the kernel (in the integral form) of the approximated functions. Diffuse Ele-
ment Method (DEM, see [11]) and Element-Free Galerkin Method (EFGM, see [3])
are based on a moving least squares procedure. Partition of Unity (PU, see [1]),
hp-clouds (see [7]) and Generalized Finite Element Method (GFEM, see [1], [2])
are methods where functions from the approximating space are products of func-
tions from an extrinsic basis (its components form a partitition of unity) and from
an intrinsic basis (its components include important features of the solution in the
approximation space).

In this contribution, we give some illustrative examples and we study the behav-
iour of their solutions obtained by means of the FEM, the RKPM and the RKHPUM,
and then we show some problems that can be successfully solved by means of mesh-
less methods.
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2. Meshless methods and solution of Helmholtz equation

Example 1 Consider the following 1D boundary value problem:

u′′(x) + 162u(x) = x, x ∈ (0, 1), (2)

u′(0) = u′(1) = 0. (3)

We seek a weak solution of the given problem, it means u ∈ W 1,2(0, 1) such that

−
∫ 1

0

(u′v′) dx + 162

∫ 1

0

uv dx =

∫ 1

0

xv dx, ∀v ∈ W 1,2(0, 1). (4)

a) Figure 1 shows the situation when we solve problem (2), (3) by the FEM
with N=11 nodes and linear approximation of solution. This solution is very poor.
Let u be the exact solution and u its FEM approximation. The dependence of the
approximation error maxx|u− u| on the number of nodes is given in Figure 2. Note
that the accuracy can be significantly improved if we use a cubic spline approximation
of the solution.

exact solution

approximation

–0.002

0

0.002

0.004

0.006

u

0.2 0.4 0.6 0.8 1 1.2
x

Fig. 1: FEM – the approximation and the
exact solution

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

number of particles

Fig. 2: FEM – dependence of the approx-
imation error on the number of nodes

b) We find an approximation of the weak solution of equation (4) by means of
the RKPM now. Suppose that uniformly distributed particles x1, . . . xN ∈ 〈0, 1〉, the
polynomial basis p(x) = (1, x), the weight function

w(x) =

{
(1− x2)2 for |x| < 1,

0 otherwise,

and a dilatation parametr R are given. Then the shape functions have the form

ΨI(x) = p

(
x− xI

R

)
b(xI) w

(
x− xI

R

)
, I = 1, . . . N. (5)

203



Here b is the solution of the system M(x)b(x) = (1, 0)T with the moment matrix

M(x) =

(
m0(x) m1(x)
m1(x) m2(x)

)
, mi(x) =

∫ 1

0

(y−x)iw

(
y − x

R

)
dy, i = 0, 1, 2. (6)

If we replace u in the weak formulation (4) by its approximation u(x) =
∑N

I=1 ΨI(x)UI

and v by ΨJ(x) for J = 1, . . . , N , we receive the system of linear equations

AU = f,

where U = (U1, ..., UN)T , f = (f1, . . . , fN)T , fI =
∫ 1

0
xΨI(x) dx,

A = (aI,J)N
I,J=1 , aI,J =

∫ 1

0

(
162ΨI(x)ΨJ(x)−Ψ′

I(x)Ψ′
J(x)

)
dx.

The approximation u for N = 11, R = 0.3, and the exact analytical solution u are
drawn in Figure 3. The behaviour of the error |u− u| is ilustrated in Figure 4.

approximation

exact solution

–0.002

0

0.002

0.004

0.006

u

0.2 0.4 0.6 0.8 1 1.2
x

Fig. 3: RKPM – the approximation and
the exact solution

–0.001

–0.0005

0

0.0005

0.001

error

0.2 0.4 0.6 0.8 1
x

Fig. 4: RKPM – the error u− u

c) We receive a better approximation if we solve the given problem by means of
the RKHPUM. In this case, the following shape functions are constructed:

Ψ0
I(x) = p

(
x− xI

R

)
b0(xI) w

(
x− xI

R

)
, Ψ1

I(x) = p

(
x− xI

R

)
b1(xI) w

(
x− xI

R

)
,

where b0, b1 are solutions of the systems M(x)b0(x) = (1, 0)T , M(x)b1(x) = (0, 1)T

and the moment matrix M has the form (6). We insert the approximation

u(x) =
11∑

I=1

Ψ0
I(x)U0

I +
10∑

I=2

Ψ1
I(x)U1

I

into the weak formulation (4) and solve the resulting linear system. We can see in
Figure 5 and Figure 6 that the accuracy of the solution has improved considerably.
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Fig. 5: RKHPUM – the approximation
and the exact solution
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0
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0.0001

error
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x

Fig. 6: RKHPUM – the error u− u

Example 2 Let Ω = 〈0, 1〉 × 〈0, 1〉,

∆u(x, y) + 162u(x, y) = 1 in Ω, (7)

∂u(x, y)

∂n
= 2 on ∂Ω. (8)

We seek a weak solution of this problem, it means u ∈ W 1,2(Ω) such that

−
∫∫

Ω

∇ u∇ v dx dy +

∫

∂Ω

2v ds + 162

∫∫

Ω

uv dx dy =

∫∫

Ω

1v dx dy, ∀v ∈ W 1,2(Ω).

(9)
We develop the approximation of this solution by means of the RKHPUM for par-
ticles (xI , yI), I = 1, . . . , N, uniformly distributed inside Ω, the polynomial basis
p(x, y) = (1, x, y), a dilatation parametr R, and the weight function

w(x, y) =

{
((1− x2)(1− y2))

2
for |x| ≤ 1, |y| ≤ 1,

0 otherwise.

In this case, the shape functions are of the form

Ψα
I (x, y) = p

(x− xI

R
,
y − yI

R

)
bα(xI , yI) w

(x− xI

R
,
x− yI

R

)
,

for α = (0, 0), (1, 0), (0, 1), where vectors bα satisfy M(x, y)b(0,0)(x, y) = (1, 0, 0)T ,
M(x, y)b(1,0)(x, y) = (0, 1, 0)T , M(x, y)b(0,1)(x, y) = (0, 0, 1)T , with

M(x, y) =




m00(x, y) m10(x, y) m01(x, y)
m10(x, y) m20(x, y) m11(x, y)
m01(x, y) m11(x, y) m02(x, y)


 , (10)

mij(x, y) =

∫∫

Ω

(
x̃− x

R

)i (
ỹ − y

R

)j

w

(
x̃− x

R
,
ỹ − y

R

)
dx̃ dỹ, i, j = 0, 1, 2. (11)
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Here we put

u(x, y) =
N∑

I=1

Ψ
(0,0)
I (x, y)U

(0,0)
I +

N∑
I=1

(Ψ
(1,0)
I (x, y)U

(1,0)
I + Ψ

(0,1)
I (x, y)U

(0,1)
I ) (12)

into the weak formulation (9) and solve the resulting system of linear equations.
The graph of the approximation for N = 100 is plotted in Figure 7. This graph
is very close to the graph of the analytical solution. The approximation errors√∑20

i=0

∑20
j=0(u( i

20
, j

20
)− u( i

20
, j

20
))2/

√∑20
i=0

∑20
j=0(u( i

20
, j

20
))2 are depicted in Figure 8.

The RKHPUM approximation u is computed for 25,36,49,64,100 particles.

Fig. 7: RKHPUM approximation
(N = 100)

20 40 60 80 100
0

0.05

0.1

0.15

0.2

number of particles

Fig. 8: RKHPUM – dependence of the ap-
proximation error on the number of nodes

3. Properties and advantages of the meshless methods

We demonstrated the construction of shape functions by means of the RKPM
and the RKHPUM in the examples above. We saw that the considered meshless
methods produce quite accurate results for h = 0.1. To achieve similar or even
higher accuracy, we needed a number of particles that was significantly lower than
the number of FEM nodes.

To realize meshless methods, no explicitly given mesh is required. The con-
struction of shape functions needs no connectivity information. The size of support
and smoothness of shape functions depend on the given dilatation parameter and
on the chosen weight function only. The fact that no mesh has to be generated is
appreciated in solving 3D structural mechanics problems (see [7]), in dealing with
large deformations (see [4], [5]), or when we work with data received from computer
tomography (CT) or magnetic resonance imaging (MRI) (see [6]).

The second advantage of meshless methods consists in the range in which shape
functions can be constructed. It is possible to build shape functions with high reg-
ularity and to successfully solve higher order differential equations (see [8]) or to
define shape functions that respect the local behaviour of the solution (see [12], [2]).
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The meshless methods can be understood as an alternative to the FEM. For
“simple” problems it is better to use the FEM, but in the specific problems mentioned
above we prefer the meshless methods.
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[12] T. Strouboulis, I. Babuška, K. Copps: The design and analysis of the generalized
finite element method. Comput. Methods Appl. Mech. Engrg. 181, 2000, 43–69.

207



NUMERICAL APPROACHES TO PARAMETER ESTIMATES
IN STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN

BY FRACTIONAL BROWNIAN MOTION∗

Jan Posṕı̌sil

Abstract

We solve the one-dimensional stochastic heat equation driven by fractional Brown-
ian motion using the modified Euler-Maruyama finite differences method. We use the
numerical solution as our observation and we show how to estimate the drift parameter
from a one path only.

1. Introduction

In this paper we follow [5] where parameter estimates in stochastic evolution
equations driven by fractional Brownian motion were studied. The existence and
ergodicity of the strictly stationary solution, which is proved there, is crucial for
the parameter (especially the drift) estimates. From an observation of the solution
on some time interval [0, T ], consistent drift estimates are given for T → ∞. Such
a constraint is not necessary for the diffusion estimates that can be calculated for
T < ∞ using the variation of the solution. A presentation of the diffusion estimates
is beyond the scope of this paper and only the drift estimates will be considered.
In [5], the results are presented in infinite dimension, however, they apply to finite
dimensional case as well.

In this paper we give a brief summary of numerical experiments done to support
the obtained results in parameter estimates. To simulate the one-dimensional frac-
tional Brownian motion we use the spectral method proposed by Z. Yin in [6]. The
problem of numerical simulations of solutions to SDEs and SPDEs has only recently
been addressed. Kloeden and Platen wrote a comprehensive book [2] dedicated to nu-
merical solutions to SDEs. Some of the methods were compared by Higham in [1] and
by the author in [4]. We solve the one-dimensional SPDE using the Euler-Maruyama
finite differences method that has been modified for the purposes of this paper so
that the driving process is considered to be a fractional Brownian motion. We will
use the numerical solution as our observation and we will show how to estimate the
parameters either from a one path or many paths observation.

∗This work was partially supported by the GACR Grant 201/04/0750 and by the MSMT Re-
search Plan MSM 4977751301.

208



2. Parameter estimates in linear SPDEs

In this section we consider the following initial boundary value problem for linear
stochastic heat equation

dX(t, x) = α∆X(t, x) dt + σ dBH(t), t ≥ 0, x ∈ [0, L], L > 0 ,

X(0, x) = x0(x), x ∈ [0, L],

X(t, 0) = X(t, L) = 0, t ≥ 0,

(1)

where α > 0 and σ > 0 are real constant parameters, ∆ = ∂2/∂x2 is the Laplace op-
erator, x0 ∈ L2([0, L]) and BH(t), t ≥ 0, is a standard cylindrical fractional Brownian
motion with Hurst parameter H ∈ (1/2, 1).

Denote by ek(x) =
√

2/L sin(kπx/L) the orthonormal1 basis for the Laplacian
on [0, L] and by λk = αk2π2/L2 for k = 1, 2, . . . . Let S(t) be a strongly continuous
semigroup generated by the Laplacian. Using this notation, it can be shown that
[S(t)ek](x) = ek(x)e−λkt. In our estimates below, we can use one function from the
basis as our test function z(x). Obviously

〈X(t, x), z(x)〉V =

∫ L

0

X(t, x)z(x) dx

|X(t, x)|2V = 〈X(t, x), X(t, x)〉V =

∫ L

0

X2(t, x) dx.

We will also need to calculate the covariance operator

〈QT ek(x), ek(x)〉V
= σ2

∫ T

0

∫ T

0

(∫ L

0

([S(u)ek](x)) ([S(v)ek](x)) dx

)
φ(u− v) du dv

= σ2

∫ T

0

∫ T

0

e−λk(u+v)φ(u− v) du dv,

where φ(u) = H(2H − 1)|u|2H−2 is again the kernel.
Let us now introduce an approach to numerically solve (1). We have to point

out that the rest of this section is for illustration purposes only, because there is no
result in numerical solution to SPDEs driven by fractional Brownian motion so far.
The proposed method below is only a natural modification of a similar method for
solving SPDEs driven by the Wiener process, but the method is presented without
the knowledge of its convergence.

Define, for i = 0, 1, . . . , M , a space grid by xi = ik, where k = L/M . Using the
finite difference for Laplacian we obtain the following system of SDEs

dX(t, xi) =
α

k2
(X(t, xi+1)− 2X(t, xi) + X(t, xi−1)) dt + σ dβH

i (t),

1it means that
∫ L

0
e2
k(x) dx = 1
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where βH
i (t) are stochastically independent standard fractional Brownian motions

and i = 1, . . . , M . We rewrite the system into the matrix form

dX(t) = AX(t) dt + σ dBH(t),

where X(t) is now an M × 1 matrix (vector) with elements X(t, xi), A is an M ×M
matrix and BH(t) an M × 1 vector of the form

A =
α

k2




−2 1 0 · · · 0

1 −2 1
...

0
. . . . . . . . . 0

... 1 −2 1
0 · · · 0 1 −2




, BH(t) =




βH
1 (t)

βH
2 (t)
...

βH
M(t)


 .

Now we can use again the Euler-Maruyama method to generate a sequence (of
vectors) (Yj) approximating the solution X(tj) by the following explicit scheme:

Y0 = x0

Yj+1 = Yj + AYjh + σWH
j , j = 1, . . . , N,

(2)

where WH
j = BH(tj+1)− BH(tj) are the increments of fractional Brownian motion.

Like in the previous section, it must be pointed out that it was not the purpose of
this paper to study convergence of this numerical scheme.

In the following figure on the left we can see one sample path of the solution
X(t, x) to (1) with initial condition x0(x) = x(L−x), x ∈ [0, L] for particular values
of H,α, σ, L and T . Picture on the right shows the mean of P = 10 paths of the
solution.

In the next figure we can see the cuts of the solution in the points x = L/2 and
t = T/2 respectively. Several individual paths are drawn together with their mean
and variance. Note that some of the path and even the mean could be also negative.
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In figure on the right we can see
the mean of P = 10 paths of the
solution to (1) over a larger time
interval (T = 100). We can see
that the influence of the initial
condition vanishes rather quickly
and the solution converges to the
strictly stationary solution.

Remark 2.1. To ensure the convergence in the explicit scheme, it is necessary to
control some relation between the time and space steps. For a deterministic PDE,
i.e. when σ = 0, it is known [3] that the relation is the following

α
h

k2
≤ 1/2. (3)

To overcome this difficulty, we can modify (2) to get the implicit scheme:

Y0 = x0

Yj+1 = Yj + AYj+1h + σWH
j , j = 1, . . . , N

(4)

and calculate Yj+1 by solving the following systems of equations

(I − Ah)Yj+1 = Yj + σWH
j , j = 1, . . . , N,

where I denotes the identity matrix. Instead of calculating each of the unknown
vector Yj by a separate trivial formula, we must now solve this system of equations
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to give the values simultaneously. This task is however not very difficult, because
the matrix (I − Ah) has a special form, it is a three-diagonal symmetric positive
definite matrix. From the theory of PDEs, it is known that the implicit scheme has
one big advantage, namely there is no such constraint as (3). In [5] it was believed
that something similar holds also for this implicit scheme for SPDEs with additive
noise. However, additional numerical experiments showed rather unstable behaviour
also for the implicit scheme. Therefore, a relation similar to (3) (depending probably
also on H) will have to be taken into account.

In both schemes (2) and (4) there has been a slight modification to take into
account the boundary conditions.

Let us now suppose that we have one path observation Xx0(t, x), t ∈ [0, T ], T À 1,
of the solution to (1). For the test purposes we use again the already calculated
numerical solution as our observation. From this path we want to estimate the value
of the parameter α. We may either consider that we know the parameter σ or we
can use its estimate from the previous section. To estimate the parameter α we will
again use [5], Theorem 3.2.1.

Let z(x) = e1(x) =
√

2/L sin(πx/L), x ∈ [0, L].
First of all we consider a reference equation (1) with the parameter α = 1. For

this equation we calculate numerically

〈QT z, z〉 = 〈QT e1, e1〉V = σ2

∫ T

0

∫ T

0

e−λ1(u+v)φ(u− v) du dv.

We now turn back to the equation (1) with unknown parameter α (i.e. not
necessarily equal to one). From observed path of the solution we have to calculate
the average

1

T

∫ T

0

|〈Xx0(t, x), z(x)〉V |2 dt =
1

T

∫ T

0

∣∣∣∣
∫ L

0

Xx0(t, x)z(x) dx

∣∣∣∣
2

dt

for sufficiently large T . Using Theorem 3.2.1 from [5], we are now able to calculate
the estimate

α̂T :=

(
〈Q∞z, z〉V

1
T

∫ T

0
|〈Xx0(t, x), z〉V |2 dt

) 1
2H

=


 〈Q∞e1, e1〉V

1
T

∫ T

0

∣∣∣
∫ L

0
Xx0(t, x)e1(x) dx

∣∣∣
2

dt




1
2H

.

In the following figure on the left, we can see how 〈QT e1, e1〉V converges to
〈Q∞e1, e1〉V for particular values of α, σ, H and L. In picture on the right, we
can see how α̂T converges to the true value of parameter α for large values of T and
for particular value of H (σ and L appears in the solution). We can see that a large
time has to be considered to obtain a reasonable estimate and due to the fluctuations
also some average.
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3. Concluding remarks

It has to be pointed out that there are still no appropriate convergence results
for the numerical methods used, therefore we used the modified Euler-Maruyama
method only for demonstration purposes. Moreover, for some combinations of pa-
rameter constants, especially α and σ, the results of these numerical experiments
are not so convincing. Hence, further research in the area of numerical solution to
stochastic evolution equations driven by fractional Brownian motion is needed.
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NUMERICAL INTEGRATION IN THE DISCONTINUOUS
GALERKIN METHOD FOR ELLIPTIC PROBLEMS∗

Aleš Prachař, Karel Najzar

1. Introduction

The use of numerical integration is considered as one of variational crimes often
committed in practical applications of the finite element method. In the theoretical
study of the Discontinuous Galerkin method exact integration is almost exclusively
considered. We refer to one of exceptions, [5], where the effect of numerical in-
tegration applied to the evaluation of nonlinear convective terms is studied while
the diffusion term is set in such a way that application of appropriate quadrature
formulae yields exact integration.

The aim of this paper is to study various aspects of the use of numerical integra-
tion for the evaluation of integrals appearing in Discontinuous Galerkin formulations
of a linear elliptic (diffusion) problem. Our aim is to obtain sufficient conditions
on quadrature formulae which ensure that there exists a unique solution of the cor-
responding discrete problem. Moreover, we shall study how the use of numerical
integration impacts error estimates.

Let us consider simple model problem

−∇ · (A(x)∇u) = f in Ω, (1)

u = gD on ΓD, (2)

(A(x)∇u) · n = gN on ΓN . (3)

We assume that Ω ⊂ R2 is a bounded polygonal domain with a Lipschitz-continuous
boundary ∂Ω divided into two disjoint parts ΓD and ΓN such that ∂Ω = ΓD ∪ ΓN ,
where meas1(ΓD) 6= 0.

We assume that functions f , gD and gN are sufficiently regular. Further, let there
exists a constant K > 0 such that the matrix A ∈ [W 1,∞(Ω)]2×2 satisfies

ξT A(x)ξ ≥ K ξT · ξ ∀ ξ ∈ R2, a. e. on Ω. (4)

∗The research of A. Prachař was a part of the research project MSM 0001066902 financed by the
Ministry of Education of the Czech Republic. The research of K. Najzar was a part of the research
project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and was
partly supported by the project No. 201/04/1503 of the Grant Agency of the Czech Republic.
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2. Discontinuous Galerkin formulation

Let Th be a conforming triangulation of Ω. We shall denote individual triangles
of Th by T and put hT = diam(T ). For the theoretical study it is convenient to
consider that a family of triangulations {Th}h>0 of a domain Ω is regular, see [4].

Let Eh stand for the set of all edges of Th. These edges represent the interfaces
between pairs of adjacent elements, or sides of triangles lying on the boundary of the
domain Ω. Let us distinguish sets of internal edges (EI

h), Dirichlet edges (ED
h ) and

Neumann edges (EN
h ). The length of the edge S ∈ Eh will be denoted by |S|.

Let us define the space Vh = {v ∈ L2(Ω) ; v|T ∈ Pp(T ) ∀T ∈ Th} , where Pp(T )
is the space of polynomials of degree at most p ≥ 1 on T .

For S ∈ EI
h let us denote by T1 and T2 the two triangles sharing the edge S. Then

we define the average on the side S by {u} = 1
2
((u|T1)|S + (u|T2)|S) and {u} = u|S

for S ∈ ED
h . The jump on S ∈ EI

h is defined by [[u]] = (u|T1)|S − (u|T2)|S and again
[[u]] = u|S for S ∈ ED

h . Orientation of the vector n is in accord with the orientation
of the jump.

For the Discontinuous Galerkin formulation let us introduce bilinear forms
a+, a− : Vh × Vh → R,

a±(u, v) =
∑
T∈Th

∫

T

(A∇u) · ∇v dx−
∑

S∈EI
h∪ED

h

∫

S

{A∇u} · n[[v]] ds

±
∑

S∈EI
h∪ED

h

∫

S

{A∇v} · n[[u]] ds +
∑

S∈EI
h∪ED

h

σS

|S|
∫

S

[[u]][[v]] ds (5)

and linear functionals L+, L− : Vh → R by

L±(v) =

∫

Ω

fv dx +
∑

S∈EN
h

∫

S

gNv ds +
∑

S∈ED
h

∫

S

gD

[
σS

|S|v ± (A∇v) · n
]

ds, (6)

where σS ∈ R, S ∈ EI
h∪ED

h , is a chosen penalty parameter. The bilinear form a+(·, ·)
introduces the Nonsymmetric Interior Penalty Galerkin (NIPG) variant (cf. [8])
while the bilinear form a−(·, ·) is symmetric for symmetric matrix A. Therefore,
we shall speak of the Symmetric Interior Penalty Galerkin (SIPG) variant (cf. [1]).
Our discrete Discontinuous Galerkin formulation then becomes:

find uh ∈ Vh such that a±(uh, v) = L±(v) ∀v ∈ Vh. (7)

It is well-known that there exists a unique solution of (7) if certain properties
of penalty parameters are satisfied, see, e. g., [2]. Moreover, if the weak solution u
of (1)–(3) satisfies u ∈ Hp+1(Ω), we are able to show that

|||u−uh|||2 :=
∑
T∈Th

|u−uh|21,2,T +
∑

S∈EI
h∪ED

h

1

|S|‖[[u−uh]]‖2
0,2,T ≤ C

∑
T∈Th

h2p
T |u|2p+1,2,T (8)

with the constant C > 0 independent of u and h.

215



3. Problem with numerical integration

The core of this paper is to explain what happens if all the terms in (5) and (6) are
evaluated with the aid of appropriately chosen quadrature formulae. For ϕ ∈ C0(T ),
T ∈ Th and ψ ∈ C0(S), S ∈ Eh, we use approximations

∫

T

ϕ(x) dx ≈
nT∑
α=1

ωT
αϕ(xT

α),

∫

S

ψ ds ≈
nS∑

α=1

νS
αψ(xS

α), (9)

where ωT
α , νS

α > 0 are integration weights and xT
α ∈ T, xS

α ∈ S are integration points.
Let us denote by a±h (·, ·) the result of application of numerical integration to the
bilinear form a±(·, ·) and similarly for the right-hand side. Related problem

find ũh ∈ Vh such that a±h (ũh, v) = L±h (v) ∀v ∈ Vh (10)

makes sense assuming that all the integrands have their point values well-defined
which requires higher regularity of data. The most important step in the verification
of assumptions of the Lax–Milgram lemma is the proof of uniform Vh-ellipticity.

Lemma 1 Let the quadrature formula for the integration of the first term of (5) be
exact for polynomials from P2p−2(T ) and/or let the set of quadrature points {xT

α}nT
α=1

contain a Pp−1(T )-unisolvent subset. Let us assume that the quadrature formula
for the penalty term is exact for polynomials of degree ≤ 2p and/or let the set of
quadrature points {xS

α}nS
α=1 contain a Pp(S)-unisolvent subset. If penalty parameters

σS are sufficiently large, there exists a constant ĉ > 0 independent of h such that

ĉ|||v|||2 ≤ a±h (v, v) for all v ∈ Vh.

Proof: According to Theorem 4.1.2 in [4] there exists a constant c1 > 0 such that

K|v|21,2,T ≤ Kc1

∑nT

α=1
ωT

α

∑2

i=1
|∂iv(xT

α)|2 ≤ c1

∑nT

α=1
ωT

α

∑2

i,j=1
(aij∂jv∂iv)(xT

α).

Similar technique is used to show that if the set of quadrature points {xS
α}nS

α=1 contains
a Pp(Ŝ)-unisolvent subset then ‖[[v]]‖2

0,2,S ≤ c2

∑nS

α=1 νS
α [[v(xS

α)]]2 with some c2 > 0.
For the NIPG variant the proof is finished, because other terms disappear if the
same quadrature formula is used for their evaluation. The requirement σS > 0 is
necessary. In the case of the SIPG formulation we take into account the inequality

∑nS

α=1
νS

α [{A∇v} · n[[v]]](xS
α) ≤ c3|S|−1/2‖[[v]]‖0,2,S

∑
T :S⊂∂T

|v|1,2,T ,

where c3 > 0 depends on p, shape regularity, properties of weights of quadrature
formulae and properties of the matrix A. By the Young’s inequality we find that

a−h (v, v) ≥
∑
T∈Th

K

(
1

c1

− 1

δ

)
|v|21,2,T +

∑

S∈EI
h∪ED

h

1

|S|‖[[v]]‖2
0,2,S

(
σS

c2

− 6δc2
3

K

)
.

For δ > c1 and σS > 6δc2c
2
3/K round brackets are positive. ¤
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Since a±h (·, ·) is a continuous bilinear form and L±h (·) is a continuous linear func-
tional on the space Vh we find by the Lax–Milgram lemma that:

Theorem 2 There exists a unique solution of discrete problem (10).

4. Errors of quadrature formulae

The next step is to express the error induced by the use of numerical integration.
We shall denote ET and ES error functionals of numerical integration in a similar
way as in [4, 5], i. e., ET (ϕ) =

∫
T

ϕdx−∑nT

α=1 ωT
αϕ(xT

α), etc.

Lemma 3 Let u, v ∈ Pp(T ), a ∈ W l+1,∞(T ) and S ⊂ ∂T . Let the quadrature
formula on the triangle be exact for polynomials of degree ≤ p + l − 2 and let the
(edge) quadrature formula be exact for polynomials of degree ≤ p+ l−1. Then there
exists a constant C > 0 independent of h such that

|ET (a∂ju∂iv)| ≤ Chl
T‖a‖l,∞,T‖∂ju‖p−1,2,T‖∂iv‖0,2,T , 1 ≤ i, j ≤ 2, (11)∣∣∣ES(a∂juv)

∣∣∣ ≤ Chl
T‖a‖l,∞,S‖∂ju‖p−1,2,T |S|−1/2‖v‖0,2,S, 1 ≤ i, j ≤ 2, (12)

|ES(a∂jvu)| ≤ Chl
T‖a‖l+1,∞,T‖∂jv‖0,2,T‖u‖p,2,T , 1 ≤ i, j ≤ 2. (13)

Proof: Estimate (11) follows as in [4]. Other two terms are also estimated with
the aid of suitable transformation to the reference edge, the Bramble-Hilbert lemma
(cf. [4]) and also the estimate

|v|j,r,S ≤ c|S|1/r|T |−1/s|v|j,s,T , 1 ≤ r, s ≤ +∞ (14)

for all v ∈ Pp(T ), S ⊂ ∂T and j ≤ p, see proof of Lemma 1 in [7]. ¤
Let us now move our attention to the error arising from the integration of terms

on the right-hand side. Let us focus on boundary conditions.

Lemma 4 Let gN ∈ Hp+1(ΓN) and gD ∈ Hp+1(ΓD). Let the (edge) quadrature
formula be exact for polynomials of degree ≤ 2p. Then there exists a constant C > 0
such that

|ES(gNv)| ≤ C|S|p+1/2|gN |p+1,2,S‖v‖0,2,T ,
σS

|S| |ES(gDv)| ≤ CσS|S|p+1/2|gD|p+1,2,S|S|−1/2‖[[v]]‖0,2,S.

If the (edge) quadrature formula is exact for polynomials of degree ≤ 2p − 1 and
A ∈ [W p+1,∞(S)]2×2 then

|ES((A∇v) · ngD)| ≤ C‖A‖p+1,∞,S|S|p+1/2‖gD‖p+1,2,S|v|1,2,T .

Proof: It is based on results from [5]. ¤
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5. Error estimate for the problem with numerical integration

In order to estimate the impact of the use of numerical integration, let us state
the main idea of the first Strang lemma ([4], Theorem 4.1.1) which says that

ĉ|||ũh − vh|||2 ≤ a±(u− vh, ũh − vh) + {a±(vh, ũh − vh)− a±h (vh, ũh − vh)}
+ {L±h (ũh − vh)− L±(ũh − vh)}, (15)

where ũh is defined by (10), vh is arbitrary element of the space Vh and u is the
weak solution of (1)–(3) and ĉ comes from Lemma 1. Our aim is to estimate two
consistency errors arising as the result of the numerical integration.

Theorem 5 If the quadrature formula on triangles is exact for polynomials of degree
≤ 2p−2, the (edge) integration formula for the second and third term in (5) is exact
for polynomials of degree ≤ 2p − 1 and if the penalty term is integrated exactly,
there exists a constant C > 0 independent of h such that

|a±(vh, ũh − vh)− a±h (vh, ũh − vh)| ≤ C‖A‖p+1,∞,Ω

( ∑
T∈Th

h2p
T ‖vh‖2

p,2,T

)1/2

|||ũh − vh|||,

where ũh, vh ∈ Vh.

Proof: Follows from estimates presented in Lemma 3. ¤

Theorem 6 Let the quadrature formula on triangles be exact for polynomials of
degree ≤ 2p − 2 and let f ∈ W p,r(Ω) with r ≥ 2. Let assumptions of Lemma 4 be
satisfied. There exists a constant C > 0 independent of h such that

|Lh(ũh − vh)− L(ũh − vh)| ≤ Chp‖f‖p,r,Ω|||ũh − vh|||+ Chp+1/2
(
|gN |p+1,2,ΓN

+|gD|p+1,2,ΓD
+ ‖A‖p+1,∞,Ω‖gD‖p+1,2,ΓD

)
|||ũh − vh|||,

for ũh, vh ∈ Vh.

Proof: Is a consequence of Lemma 4, Theorem 4.1.5 in [4] and the Broken Poincaré
inequality, see [3]. We also use |S| ≤ h = maxT∈Th

hT . ¤

Since other terms can be estimated with the aid of the interpolation theory we
are ready to write the main theorem.

Theorem 7 Let all the assumptions of Theorem 5 and Theorem 6 be satisfied and
let the approximate bilinear form a±(·, ·) be uniformly Vh-elliptic. Then there exists
a constant C > 0 independent of h such that

|||u− ũh||| ≤ Chp(|u|p+1,2,Ω + ‖A‖p+1,∞,Ω‖u‖p+1,2,Ω + ‖f‖p,r,Ω)

+Chp+1/2
(
|gN |p+1,2,ΓN

+ |gD|p+1,2,ΓD
+ ‖A‖p+1,∞,Ω‖gD‖p+1,2,ΓD

)
,

where ũh is defined in (10) and u ∈ Hp+1(Ω) is the weak solution of (1)–(3).
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6. Conclusion

In this paper the effect of numerical integration in the Discontinuous Galerkin for-
mulations for linear elliptic problem was studied. Sufficient conditions which ensure
that the discrete problem is uniquely solvable were found. Moreover, if quadrature
formulae of a certain precision are used then the order of accuracy (compared with
the case without numerical integration) is not decreased.

If we compare these results with the conforming finite element method (see,
e. g., [4]), we find that higher regularity of the matrix A is needed for the proof of error
estimate. Theorem 5 has again a simple interpretation: The order of convergence is
not decreased if the integration formulae yield exact integration of the bilinear form
in the case that A is a constant matrix (cf. Remark 4.1.8 in [4]).

Let us also note that numerical results (not reported here) illustrate reasonable
degree of agreement with presented theoretical results.
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AN UNSTEADY NUMERICAL SOLUTION OF VISCOUS
COMPRESSIBLE FLOWS IN A CHANNEL∗

Petra Punčochářová, Karel Kozel, Jǐŕı Fürst, Jaromı́r Horáček

Abstract

The work deals with numerical solution of unsteady flows in a 2D channel where
one part of the channel wall is changing as a given function of time. The flow is
described by the system of Navier-Stokes equations for compressible (laminar) flows.
The flow has low velocities (low Mach numbers) and is numerically solved by the
finite volume method. Moving grid of quadrilateral cells is considered in the form of
conservation laws using ALE (Arbitrary Lagrangian-Eulerian) method.

1. Introduction

This work presents an unsteady numerical solution of the system of Navier-Stokes
equations for compressible laminar flow. An unsteady flow is caused by the moving
part of the channel wall. The authors investigated flows in two types of channels,
in an nonsymmetric channel and in a symmetric channel. The flow in a symmetric
channel can represent a very simple model of airflow in a human vocal tract.

The numerical solution was obtained by the explicit central finite volume version
of MacCormack scheme on a grid of quadrilateral cells.

2. Mathematical model

The 2D system of Navier-Stokes equations (1) was used as mathematical model
to describe an unsteady viscous compressible laminar flow in a channel. The system
is expressed in non-dimensional form:

Wt + Fx + Gy =
1

Re
(Rx + Sy), (1)

W = [ρ, ρu, ρv, e]T is the vector of conservative variables, F and G are the vectors
of inviscid fluxes, R and S are the vectors of viscous fluxes. Variable ρ denotes the
density, u and v are the components of the velocity vector, and e is the total energy
per unit volume. Static pressure p in the inviscid fluxes is expressed by the equation
of state. Reynolds number Re = ρ∞u∞H/η∞ is computed from the inflow variables:
ρ∞ = const, u∞ = const, η∞ = const, and H is the inflow width of the channel.
Non-dimensional dynamic viscosity η = 1/Re is constant in our cases.

∗This work was supported by grant GA AV ČR No. IAA 2007 60613 and by Research Plan
MSM No. 6840770010.
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2.1. Mathematical formulation

For the numerical solution, the domain of solution D and the boundary conditions
have to be defined. Two channels were tested. The first is an nonsymmetric channel
and the second is a symmetric channel. Boundary conditions were considered in the
following form:
a) Upstream conditions: three components of W are given, the pressure is extrapo-
lated.
b) Downstream conditions: the pressure is given, the other values are extrapolated
or ∂W/∂~n = 0 where ~n is an outlet normal vector.
c) On the solid wall, the velocity vector and the normal derivative of temperature
vanish that is (u, v)wall = ~0 and ∂T/∂~n = 0.
d) At the axis of symmetry, (u, v) · ~n = 0 is considered.

Figure 1 shows D1, the domain of solution, which is called the nonsymmetric
channel. The upper and lower boundary represent solid walls. The lower solid wall
of the channel has a time changing part between points A and B that is a given
function of time g1(t).

Fig. 1: Domain of solution D1 (the nonsymmetric channel).

Figure 2 shows D2, the domain of solution in the symmetric channel. The compu-
tational domain is only the lower half of the channel. Its upper boundary coincides
with the axis of symmetry. The lower boundary represents a solid wall. The part
of the wall between points A and B is changing and determined by g2(t), a given
function of time.

Fig. 2: Domain of solution D2 (the symmetric channel).
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3. Numerical solution

The numerical solution of the above two-dimensional problems is obtained by the
finite volume method in the cell centered form (FVM) on a grid of quadrilateral cells.

The bounded domain D is divided into mutually disjoint sub-domains Di,j (e.g.
quadrilateral cells). Equations (1) are integrated over subdomain Di,j. By using
the Green formula and the Mean Value Theorem, we can write the integral form of
FVM:

Wt|i,j =
−1

µi,j

[∮

∂Di,j

(Fdy −Gdx)−
∮

∂Di,j

(Rdy − Sdx)

]
, (2)

where µi,j =
∫ ∫

Di,j
dxdy stand for the volumes of the cells. We get FVM in the

differential form:

W n+1
i,j −W n

i,j

∆t
=
−1

µi,j

∑

k

[(F̃k − R̃k)∆yk − (G̃k − S̃k)∆xk], (3)

where ∆t = tn+1−tn is the time step. Physical fluxes F, G, R, S on edge k of cell Di,j

are replaced by numerical fluxes F̃ , G̃, R̃, S̃. The particular choice of numerical fluxes
and of the time derivative approximation depend on a chosen numerical scheme.

3.1. Numerical scheme

The explicit MacCormack (MC) scheme in the predictor-corrector form is used
to approximate system (1). This scheme is 2nd order accurate in time and space.

W
n+1/2
i,j = W n

i,j −
∆t

µi,j

4∑

k=1

[(F̃ n
k − s1kW

n
k − R̃n

k)∆yk − (G̃n
k − s2kW

n
k − S̃n

k )∆xk],

W̄ n+1
i,j =

1

2
(W n

i,j + W
n+1/2
i,j )− ∆t

2µi,j

4∑

k=1

[(F̃
n+1/2
k − s1kW

n+1/2
k − R̃

n+1/2
k )∆yk

−(G̃
n+1/2
k − s2kW

n+1/2
k − S̃

n+1/2
k )∆xk]. (4)

Equation (4) represents the MC scheme for a viscous flow in a domain with a moving
grid of quadrilateral cells. The moving grid in an unsteady domain is described by
using the Arbitrary Lagrangian-Eulerian (ALE) method which defines the projection
of reference domain D0 to a time-dependent domain Dt [1]. Consequently, additional
fluxes ~skWk appear in the MC scheme, where vector ~sk represents the speed of edge k.
The approximations of conservative variable Wk and diffusive components Rk, Sk

on edge k are central. The second derivatives (dissipative terms) on an edge are
approximated using dual volumes [2] as is shown in Figure 3.

The inviscid numerical fluxes are approximated as follows:

F̃ n
1 = F n

i,j, F̃
n+1/2
1 = F

n+1/2
i+1,j , F̃ n

3 = F n
i−1,j, F̃

n+1/2
3 = F

n+1/2
i,j ,

G̃n
2 = Gn

i,j, G̃
n+1/2
2 = G

n+1/2
i,j+1 , G̃n

4 = Gn
i,j−1, G̃

n+1/2
4 = G

n+1/2
i,j , etc.

(5)
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Fig. 3: Finite volume Di,j, dual volume V ′
k.

The last term of the MC scheme is the Jameson artificial dissipation AD(Wi,j)
n,

which is added to schemes with higher order of accuracy to stabilize the numerical
solution:

AD(Wi,j)
n = C1γ1(W

n
i+1,j − 2W n

i,j + W n
i−1,j) + C2γ2(W

n
i,j+1 − 2W n

i,j + W n
i,j−1), (6)

where C1, C2 ∈ R are constants and the normed pressure gradients have the form:

γ1 =
|pn

i+1,j − 2pn
i,j + pn

i−1,j|
|pn

i+1,j|+ 2|pn
i,j|+ |pn

i−1,j|
, γ2 =

|pn
i,j+1 − 2pn

i,j + pn
i,j−1|

|pn
i,j+1|+ 2|pn

i,j|+ |pn
i,j−1|

. (7)

Then we can compute a vector of conservative variables W at a new time level tn+1:

W n+1
i,j = W̄ n+1

i,j + AD(Wi,j)
n. (8)

Stability condition of the scheme (on a regular orthogonal grid) limits the time step

∆t ≤ CFL

( |umax|+ c

∆xmin

+
|vmax|+ c

∆ymin

+
2

Re

( 1

∆x2
min

+
1

∆y2
min

))−1

, (9)

where c denotes the local speed of sound, CFL < 1, and the minimal step of the
grid in the y-direction is ∆ymin ≈ 1/

√
Re due to boundary layer.

4. Numerical results

For numerical computation, domains D1 and D2 (see Figures 1, 2) are covered
with a grid of quadrilateral cells. The cells near the wall boundary have successive
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refinement in the y-direction (due to the existing boundary layer) as shown in detail
in Figure 1. The results are depicted as Mach number isolines and as the velocity
vectors.

4.1. Numerical results in domain D1

The length and width of domain D1 are L = 12 and H = 0.5, and D1 con-
tains 600 × 50 cells. Parametres considered for computation: the outflow pressure
is p2 = 0.9p∞ and it corresponds to the inflow Mach number M∞ = 0.120 and
Re = 5 · 105. Figure 4 shows the steady solution of viscous laminar flow in the non-
symmetric channel where the moving part of the solid wall (see Figure 1) is fixed.
The maximum Mach number in the domain was computed to be Mmax = 0.345. Fig-
ure 5 (a, b, c, d, e) shows the development of unsteady viscous compressible laminar
flows in domain D1 at several time layers starting by the second period. For the
computation of the unsteady solution, the steady solution was used as the initial
state.

Fig. 4: The steady solution of a viscous laminar flow in the nonsymmetric channel, p2 =
0.9p∞, Re = 5 · 105, Mmax = 0.345, 600× 50 cells.

4.2. Numerical results in domain D2

The length and width of domain D2 are L = 8 and H = 0.4, and D2 contains
400 × 50 cells. Parametres considered for computation: the inlet Mach number
M∞ = 0.02, the dimension frequency of the solid wall between points A, B (see Fig-
ure 2) is fdim = 20 Hz and Re = 9 · 103. These values approximately correspond to
the real flow in the human vocal tract. Figure 6a) shows the steady solution of vis-
cous laminar flow in the symmetric channel where the moving part of the solid wall
is fixed. The maximum Mach number in the domain was computed, Mmax = 0.096.
Figure 6b) shows convergence to a steady solution that is observed using L2 norm of
momentum residuals (ρu). It seems to be relatively good for this case with a very
low Mach number. Figure 7 (a, b, c, d, e) shows development of unsteady viscous
compressible laminar flows in domain D2 at several time layers starting by the third
period. For computation of the unsteady solution, the steady solution was used as
the initial state. In Figure 7b), one can see typical behaviour with choking flows
in a very narrow part of the channel and with the time development of flow includ-
ing separation domains. The geometry of domain D2 and the boundary conditions
represent a simple model of flow in the human vocal tract [3, 4].

We also tried to compute both cases without the artificial dissipation AD(Wi,j)
n.

In this case, however, the convergence to the steady state was not satisfactory.
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a) t = 2π, Mmax = 0.455

b) t = 2π + π
2 , Mmax = 0.338

c) t = 3π, Mmax = 0.374

d) t = 2π + 3π
2 ,Mmax = 0.568

e) t = 4π, Mmax = 0.464

Legend to Mach numbers:

Fig. 5: The unsteady solution of a viscous laminar flow in the nonsymmetric channel,
p2 = 0.9p∞, Re = 5 · 105, 600× 50 cells.
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a) Numerical result

b) Convergence to a steady solution – residual vs. number of iterations

Fig. 6: The steady solution of a viscous laminar flow in the symmetric channel, M∞ =
0.02, Re = 9 · 103, Mmax = 0.096, 400× 50 cells.

5. Summary

The calculation numerical approximations of steady state solutions for inviscid
compressible flows with very low Mach numbers is a very difficult task and special
methods have to be used. For viscous compressible problems, the method described
above can be successfully used for the steady as well as unsteady numerical solutions
of flows with low Mach numbers.
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a) t = 4π, Mmax = 0.094

b) t = 4π + π
2 , Mmax = 0.077

c) t = 5π, Mmax = 0.129

d) t = 4π + 3π
2 ,Mmax = 0.145
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e) t = 6π, Mmax = 0.102

Legend to Mach numbers:

Fig. 7: The unsteady solution of a viscous laminar flow in the symmetric channel, M∞ =
0.02, Re = 9 · 103, 400× 50 cells.
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ON SOME A POSTERIORI ERROR ESTIMATION RESULTS
FOR THE METHOD OF LINES∗

Karel Segeth, Pavel Šoĺın

Abstract

The paper is an attempt to present an (incomplete) historical survey of some basic
results of residual type estimation procedures from the beginning of their development
through contemporary results to future prospects. Recently we witness a rapidly
increasing use of the hp-FEM which is due to the well-established theory. However,
the conventional a posteriori error estimates (in the form of a single number per
element) are not enough here, more complex estimates are needed, and this can be
the way to obtain them.

1. Introduction

In the 1990’s, the subject of a posteriori error estimation with the finite element
method and adaptive solution procedures started its very rapid development. Many
results for the solution of linear and nonlinear elliptic partial differential equations
were reached and first results for the solution of nonlinear parabolic partial differen-
tial equations were published. A pioneering paper in this field was [2].

We present some basic results from this time period and continue to contempo-
rary results and future prospects of this approach. A rich contemporary source of
knowledge is the book [3].

Recently, we witness a rapidly increasing use of the hp-FEM. We are concerned
with this subject in the conclusion of this paper. We also refer to some published
numerical results and their accuracy.

We introduce a nonlinear parabolic model problem and its finite element solution
in Sections 2 and 3 while in Section 4 we are concerned with a posteriori error
estimation. We quote some adaptive grid refinement procedures and speak about
further prospects in Section 5.

We apologize to all colleagues whose names and contributions to the subject were
not, for the lack of space, mentioned in this paper.

2. Model problem

We introduce a nonlinear parabolic model problem. For the sake of brevity,
we consider only one equation with a scalar solution u and a single 1D space vari-
able x. All the results can be generalized to a system of parabolic equations and
a d-dimensional space variable.

∗This work was supported by Grant 201/04/1503 of the Czech Science Foundation and by
Institutional Research Plan AV0Z10190503 of the Academy of Sciences of the Czech Republic.
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Let us consider the problem

∂u

∂t
(x, t)− ∂

∂x

(
a(u)

∂u

∂x
(x, t)

)
+ f(u) = 0 for 0 < x < 1, 0 < t ≤ T (1)

with the boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T, (2)

and the initial condition

u(x, 0) = u0(x), 0 < x < 1, (3)

where u0 is a given function.
Let us assume

0 < µ ≤ a(s) ≤ M, s ∈ R,

|a(r)− a(s)| ≤ L|r − s|,
|f(r)− f(s)| ≤ L|r − s|, r, s ∈ R,

where µ, M , and L are positive constants. We need some more assumptions for some
of the proofs, see [9].

In the standard way we introduce the weak solution u(x, t) ∈ H1([0, T ], H1
0 (0, 1))

of the model problem by the identity

(∂u

∂t
, v

)
+

(
a(u)

∂u

∂x
,
∂v

∂x

)
+ (f(u), v) = 0 (4)

to be satisfied for t ∈ (0, T ] by all test functions v ∈ H1
0 (0, 1) and the identity

(
a(u0)

∂u

∂x
,
∂v

∂x

)
=

(
a(u0)

∂u0

∂x
,
∂v

∂x

)
(5)

to be satisfied for t = 0 also by all test functions v ∈ H1
0 (0, 1). This latter identity

corresponds to the initial condition. Some other weak formulations of the initial
condition are also possible. We use the symbol (·, ·) for the usual L2(0, 1) inner
product and ‖ · ‖1 for the H1(0, 1) norm.

3. Semidiscrete approximate solution

To define the finite element solution of the problem (1) to (3), we start with the
space discretization (semidiscretization). We choose a partition

0 = x0 < x1 < · · · < xN−1 < xN = 1 (6)

of the space interval [0, 1] and further put

hj = xj − xj−1, j = 1, . . . , N, and h = max
j=1,...,N

hj.
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We use the notation

(v, w)j =

∫ xj

xj−1

v(x)w(x) dx

for the inner product restricted to the interval [xj−1, xj], and similarly ‖v‖j and ‖v‖1,j

for the restricted L2(0, 1) and H1(0, 1) norms.
On the partition (6), we construct a finite dimensional subspace

SN,p
0 =

{
V | V ∈ H1

0 (0, 1), V (x) =
N−1∑
j=1

Vj1ϕj1(x) +
N∑

j=1

p∑

k=2

Vjkϕjk(x)
}

of the space H1
0 (0, 1).

The functions ϕjk are chosen to form a hierarchic basis. For k = 1, we put

ϕj1(x) = (x− xj−1)/hj, xj−1 ≤ x < xj,

= (xj+1 − x)/hj+1, xj ≤ x ≤ xj+1,

= 0 otherwise.

These functions are the well known hat or chapeau functions. For k > 1, we further
put

ϕjk(x) =

√
2(2k − 1)

hj

∫ x

xj−1

Pk−1(y) dy, xj−1 ≤ x ≤ xj,

= 0 otherwise,

where Pk is a Legendre polynomial transformed from [−1, 1] to [xj−1, xj]. These func-
tions (primitive functions to Legendre polynomials) are called the Lobatto polynomi-
als or bubble functions. The idea of hierarchic basis functions was first introduced in
the book [11].

The principal idea of the method of lines is the space semidiscretization while the
time variable remains continuous. We look for the semidiscrete approximate solution
Ū(x, t) ∈ H1([0, T ], SN,p

0 ) in the form

Ū(x, t) =
N−1∑
j=1

Ūj1(t)ϕj1(x) +
N∑

j=1

p∑

k=2

Ūjk(t)ϕjk(x).

We require that the identities

(∂Ū

∂t
, V

)
+

(
a(Ū)

∂Ū

∂x
,
∂V

∂x

)
+ (f(Ū), V ) = 0, t ∈ (0, T ], V ∈ SN,p

0 , (7)

(
a(u0)

∂Ū

∂x
,
∂V

∂x

)
=

(
a(u0)

∂u0

∂x
,
∂V

∂x

)
, t = 0, V ∈ SN,p

0 , (8)
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that correspond to the identities (4), (5), be satisfied. The basis functions as well
as test functions are thus chosen from the same space SN,p

0 . Note that after sub-
stituting ϕil for the test functions V (x) in (7), we obtain an initial value problem
for a system of ordinary differential equations with the initial condition (8). Other
initial conditions can be employed, too.

The ordinary differential system (7) with the initial condition (8) for the unknown
coefficients Ūjk(t) is then solved by standard numerical software.

4. Analysis of residual a posteriori semidiscrete error indicators

Let us denote the error of the semidiscrete solution Ū(x, t) by

e(x, t) = u(x, t)− Ū(x, t).

We introduce the finite dimensional space

ŜN,p+1
0 =

{
V̂ | V̂ ∈ H1

0 (0, 1), V̂ (x) =
N∑

j=1

V̂jϕj,p+1(x)
}

and approximation of the error

Ē(x, t) =
N∑

j=1

Ēj(t)ϕj,p+1(x).

Note that we look for approximation of the error in the finite element space of
piecewise polynomials of the degree p + 1.

Some results on the semidiscrete error for the case of linear parabolic equations
and systems were given in [1], [7].

Some time later, they were generalized to the nonlinear case. If we subtract the
identities (7), (8) that define the semidiscrete solution Ū from the identities (4), (5)
that define the weak solution u we obtain for Ē(x, t) ∈ H1([0, T ], ŜN,p+1

0 ) the initial
value problem for the system of ordinary differential equations

(∂Ē

∂t
, V̂

)
j
+

(
a(Ū + Ē)

∂Ē

∂x
,
∂V̂

∂x

)
j

(9)

= −(f(Ū + Ē), V̂ )j −
(∂Ū

∂t
, V̂

)
j
−

(
a(Ū + Ē)

∂Ū

∂x
,
∂V̂

∂x

)
j
, t ∈ (0, T ], V̂ ∈ ŜN,p+1

0 ,

with the initial condition

(
a(u0)

∂Ē

∂x
,
∂V̂

∂x

)
j
=

(
a(u0)

∂(u0 − Ū)

∂x
,
∂V̂

∂x

)
j
, t = 0, V̂ ∈ ŜN,p+1

0 . (10)

The quantity Ē defined by (9), (10) is called the nonlinear parabolic error indicator.
Note that (9), (10) is a nonlinear problem for the unknowns Ēj(t). For the practical
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computation, these equations can be added to the system (7), (8) for finding the
semidiscrete solution Ūjk(t). Further, note that the equations of the system (9) are
uncoupled.

There are some simplifications that allow for more efficient computation while,
asymptotically, the error indicator is of the same quality. The linear parabolic error
indicator, and nonlinear and linear elliptic error indicator are defined in an analogous
way. The detailed description can be found in, e.g., [5] or [9]. The following theorem
is proven in [9] for the nonlinear parabolic error indicator.

Theorem. Let the weak solution u(x, t) given by (4), (5) be smooth, let Ū(x, t)
and Ē be given by (7), (8) and (9), (10), respectively. Let ‖e‖1 ≥ Chp. Then

lim
h→0

‖Ē‖1

‖e‖1

= 1.

The quantity ‖Ē‖1/‖e‖1 is called the effectivity index. For the linear parabolic
as well as linear elliptic error indicator (but not for the nonlinear elliptic one), this
theorem is proven in [9], too.

Analysis of the semidiscrete error does not include analysis of the error of solution
of the corresponding system of ordinary differential equations in time. In practice,
this system is solved by standard software that admits the required accuracy to be
given by the user. This required accuracy is then prescribed several orders less than
the total prescribed accuracy of the fully discrete solution. There are several papers
concerned with the analysis of fully discrete error, see, e.g., [5], [12], [13].

5. Space h- and hp-adaptive procedures

Procedures that can adapt the space grid are very often used. They are usually
based on the principle of the equidistribution of error that requires

‖e‖1,i = ‖e‖1,j, i, j = 1, . . . , N.

This requirement is applied to the error indicator Ē,

‖Ē‖1,i = ‖Ē‖1,j, i, j = 1, . . . , N.

Several such procedures have been published, e.g. the dynamic grid adaptation in [1],
grading function grid adaptation in [8], etc. We successfully tested the above intro-
duced error indicators on these procedures.

We witness a rapidly increasing use of the hp-FEM for solving elliptic as well as
parabolic problems. For this adaptive finite element method, however, the conven-
tional error estimates (in the form of a single number per element) are not enough.
There are numerous options how a higher-order element can be refined because of
the interplay between h and p. Thus the estimates of higher-order derivatives of the
error are required. Moreover, these hp-procedures are particularly important if the
space variable is a vector. In these problems, the reference solution usually serves
as the source of the a posteriori error estimation. Both the ideas and computational
procedures of the hp-FEM are presented in, e.g., [4], [6], [10].
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ON A FINITE ELEMENT METHOD APPLICATION
IN AEROELASTICITY∗

Petr Sváček

Abstract

The subject of this paper is the numerical simulation of aeroelastic problems. The
interaction of two-dimensional incompressible viscous flow and a vibrating airfoil is
modelled. The solid airfoil, which can rotate around the elastic axis and oscillate in
the vertical direction, is considered. The numerical simulation consists of the finite
element solution of the Navier-Stokes equations coupled with the system of ordinary
differential equations describing the airfoil motion. The stabilization procedure is
of GLS type. The developed numerical approximation is applied on an aeroelastic
problem.

1. Introduction

The mathematical model of relevant technical cases consists of (incompressible)
fluid model and (elastic) structure model. In this paper mainly the numerical ap-
proximation of fluid motion is addressed. In order to approximate the Navier-Stokes
equations several methods can be used. Besides finite differences, the finite volume
method can be used for the approximation (for application of finite volume method
to solution of incompressible flow cf. [5]). In the present paper the finite element
method is used for approximation of the fluid motion. In this case one needs to treat
several sources of instability: one caused by the fact that Babuška-Brezzi condition
needs to be satisfied in order to guarantee the stability of the scheme, the other
source of instability related to the fact that extremely large Reynolds numbers are
involved in the problem (Re ≈ 105–106).

2. Mathematical model

The incompressible viscous air flow is described with the aid of Navier-Stokes
system of equations written in so-called Arbitrary Lagrangian-Eulerian (ALE) form,
cf. [6], [2]. In order to clarify the method, we start with the definition of an ALE
mapping At: We assume that the mapping At is a given C1 continuous bijective map-
ping from the reference (original) configuration Ω0 onto the computational domain
at a time t, i.e. the current configuration Ωt.

At : Ω0 7→ Ωt, Y 7→ y(t, Y ) = At(Y ).

∗The author acknowledges the financial support of the Ministry of Education of the Czech
Republic by Research Plan MSM 6840770003 and also the financial support of the Grant Agency
of the Czech Republic by the project No. 201/05/P142.
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Fig. 1: The elastic support of the airfoil hanging on translational and rotational springs.

The time derivative with respect to the reference frame Ω0 is called the ALE
derivative, i.e.

DAtf

Dt
=

∂f

∂t
+ (wg · ∇)f. (1)

With the aid of the ALE derivative DAtu/Dt, the Navier-Stokes system of equa-
tions is rewritten as follows

DAtu

Dt
− ν4u +

(
(u−wg) · ∇

)
u +∇p = 0, ∇ · u = 0, in Ωt , (2)

where by Ωt we denote the computational domain occupied by fluid at time t ∈ (0, T ),
u denotes the velocity vector, p denotes the kinematic pressure (i.e. the dynamic
pressure divided by the air density), and the domain velocity vector is denoted
by wg. On the boundary ∂Ω we prescribe suitable boundary conditions. First,
the boundary ∂Ω is decomposed into three distinct parts, i.e. ∂Ω = ΓWt ∪ ΓD ∪ ΓO.
On ΓD and ΓWt a Dirichlet boundary conditions are prescribed, i.e.

a) u = uD on ΓD, b) u = wg on ΓWt . (3)

The latter part of the boundary is the only moving part of the boundary. The bound-
ary ΓO represents the outlet, where the following boundary condition is prescribed

[
−(p− pref )n− 1

2
(u · n)−u + ν

∂u

∂n

]∣∣∣∣
ΓO

= 0, (4)

where pref is a reference pressure value (e.g. zero).
If ΓO is the outflowing part of the boundary, i.e. (u ·n)− = 0, the condition (4) is

equivalent to the well known do-nothing boundary condition. We consider the weak
formulation (2–4) in the Sobolev spaces (H1(Ω))

2
and L2(Ω) for the velocities and

pressures, respectively.
The fluid model is coupled with the nonlinear equations of motion for a flexibly

supported airfoil, see [7]

m ḧ + Sα α̈ cos α− Sα α̇2 sin α + khh h = −L(t), (5)

Sα ḧ cos α + Iαα̈ + kαα α = M(t).

236



where h and α denotes the vertical (downwards oriented) and the rotational (clock-
wise oriented) displacements, respectively, whereas L and M denote the aerody-
namical lift force and torsional moment. The mathematical models (5) and (2) are
coupled with the evaluation of aerodynamical forces defined by

L = −
∫

ΓWt

2∑
j=1

σ2jnjdS, M = −
∫

ΓWt

2∑
i,j=1

σijnjr
ort
i dS, (6)

where rort
1 = −(xEO2 − x2), rort

2 = xEO1 − x1 and σij is the stress tensor, cf. [3].

3. Numerical approximation

First, let us start with an equidistant discretization of the time interval [0, T ] with
the time step ∆t, i.e. tk = k ·∆t for k = 0, 1, 2, . . . . Let un, pn denote approximations
of the velocity vector u and the pressure p evaluated at the time tn, i.e. un ≈ u(tn)
and pn ≈ p(tn). The ALE derivative of the velocity vector u is approximated by

DAtf

Dt
≈ 3un+1 − 4ûn + ûn−1

2∆t
, (7)

where the velocity un+1 denotes the approximate velocity at time tn+1 and the ve-
locities ûn, ûn−1 are the velocities at previous time steps tn and tn−1 transformed
from domains Ωtn , Ωtn−1 onto the current computational domain Ωtn+1 , i.e., ûn ≡
un

(Atn

(A−1
tn+1

(y)
))

,ûn−1 ≡ un−1
(Atn−1

(A−1
tn+1

(y)
))

. The time difference formula is
then involved in the problem (2), i.e.

3un+1 − 4ûn + ûn−1

2∆t
− ν4u +

(
(u−wg) · ∇

)
u +∇p = 0, (8)

∇ · u = 0, in Ωt

and the system of equations (8) is formulated weakly. The components of the ap-
proximate solution are sought in the space X∆. X∆ denotes the finite element space
of Taylor-Hood elements, i.e. piecewise quadratic velocity components and linear
pressures.

The stabilized discrete problem reads: Find U = (u, p) ∈ X∆ such that

a(U,U, V ) + L∆(U,U, V ) + P∆(U, V ) = f(V ) + F∆(V )

for all V = (v, q) ∈ X0
∆ (X0

∆ denotes the space of functions from X∆ being zero
on the Dirichlet part of boundary). The terms a(·, ·, ·) and f(·) are the standard
Galerkin terms defined as

a(U∗, U, V ) =
3

2∆t
(u,v)Ω + ν (∇u,∇v)Ω +

((
(u−wn+1

g ) · ∇)
u,v

)
Ω

− (p,∇ · v)Ω + (∇ · u, q)Ω ,

f(V ) =
1

2∆t

(
4ûn − ûn−1,v

)
Ω
−

∫

ΓO

prefv · n dS, (9)
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the terms L∆(·, ·) and F∆(·) are GLS (Galerkin Least Squares) additional stabiliza-
tion terms defined as

L∆(U∗, U, V ) =
∑

K∈τ∆

δK

( 3

2∆t
u− ν4u + ((u∗ −wg) · ∇)u +∇p, ψ(u, q)

)
K

,

F∆(V ) =
∑

K∈τ∆

δK

( 1

2∆t
(4ûn − ûn−1), ψ(u, q)

)
K

, (10)

where ψ(u, q) ≡ ((u∗ −wg) · ∇)v + ∇q, and the term P∆(U, V ) is the grad-div
stabilization term defined as

P∆(U, V ) =
∑

K∈τ∆

τK(∇ · u,∇ · v)K , (11)

where U = (u, p), V = (v, q), U∗ = (u∗, p) and δK and τK are suitably chosen para-
meters, cf. [4].

4. Numerical results

The presented method was applied to several practical problems and the numerical
results were validated. Here, the numerical results for the coupled system (2) and (5)
is presented for the case of flexibly supported airfoil NACA 0012. The solution was
performed for far field velocity U∞ = 5 m s−1 and modified parameter values were
taken from [1]. The critical velocity determined by NASTRAN computations was
30.4m/s, which corresponds to the results computed by the presented method. The
airfoil response can be seen in Figure 2 and 3.
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Fig. 2: Aerodynamical forces acting on airfoil NACA 0012 for far field velocity U∞ =
29ms−1 causes damped vibrations.
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Fig. 3: The airfoil response of the aerodynamical forces applied on the airfoil NACA 0012
for far field velocity U∞ = 32ms−1 .
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UNCERTAINTIES IN MEASUREMENT OF THERMAL
TECHNICAL CHARACTERISTICS OF BUILDING INSULATIONS∗

J. Vala, S. Šťastńık, H. Kmı́nová

1. Thermal technical characteristics of building insulations

Most thermal insulation materials used in civil engineering, namely those applied
as parts of layered constructions in buildings, have a complicated porous micro-
and macrostructure; thus the reliable prediction of their thermal insulation and ac-
cumulation properties is rather difficult. Technical standards require the so-called
thermal stability, which means in practice i) the preservation of nearly constant
temperature T (t) in time t ≥ 0 in the interior of the building, independent of quasi-
periodic (day and year) climatic cycles, and ii) very slow changes of time derivatives
of T (t); moreover iii) the minimization of energy consumption by heating (in winter)
and air conditioning (in summer) should be guaranteed. The general description of
physical processes in porous materials comes from the classical conservation laws for
mass, momentum, and energy and contains: i) the heat conduction, convection, and
radiation (Fourier equation); ii) the partially irreversible propagation of moisture in
various phases (as air humidity, liquid water and ice) and, possibly, of other con-
taminants; and iii) the compressible viscous air flow in rooms and through walls,
roofs, etc. (Navier-Stokes equations). In the corresponding initial and boundary
problems for systems of partial differential equations of evolution we need to know
a lot of thermal technical characteristics, especially of a) the heat conduction; b) the
heat convection; c) the heat radiation; d) the pore space and its availability for air,
moisture, and contaminants; and e) the air flow in rooms, walls, roofs, etc. Typically
such characteristics depend on T and other quantities, e. g. on the moisture content
(and its phase) in applied materials.

One of the research directions at the Faculty of Civil Engineering of the Brno
University of Technology is the development of ecological insulation materials, based
on the wood waste. The crucial step of such experimental research is some reliable
estimate of the basic thermal technical characteristics, at least those denoted as a).
Under the assumption that the material is homogeneous and isotropic (due to the
technology of its composition) the heat conduction can be described using three
constants only: i) the material density ρ, ii) the heat conduction factor λ, iii) the
thermal capacity (specific heat) c. Consequently the thermal insulation ability is
determined by λ, and the thermal accumulation ability is determined by c,
see [6, pp. 52, 57]. Frequently we shall apply the notation ζ = cρ.

∗This work was partially supported by the Ministry of Education, Youth and Sports of the Czech
Republic, research & development project No. 0021630511.
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2. Laboratory measurements

The classical approach to the simulation of heat transfer is to solve the classical
differential equation (see [2, p. 263])

ζ ∂T/∂t− λ ∂2T/∂x2 = r (1)

(with some “effective characteristics” λ, ζ) in two variables: in t and in one space
coordinate x; r represents (in general, as a function of t) the generated heat (per
length). The setting of ρ is easy: it can be obtained as the ratio mass / volume.
The identification of λ comes usually from standard experiments with the stationary
heat transfer; in this case the first additive (time-dependent) term in (1) is missing.
However, c must be obtained in another way, using various calorimeters where the
contact with water is needed; this brings a danger of mismatched results caused by
humidity in pores.

In [5], a new approach to measurements has been suggested: both λ and c (or ζ
because ρ in known) can be obtained from an experiment that, unlike the standard
experiment for determining λ, takes a non-stationary heat transfer into consider-
ation. A more advanced numerical analysis is then needed for the simultaneous
identification of both characteristics.

Fig. 1 presents the scheme of the original measurement device; we use the follow-
ing notation: 1 – the thermal insulation (foam polystyrene blocks), 2 – two aluminium
plates, just the lower one is heated, 3 – the tested sample (with unknown λ and ζ),
4 – the highlighting of the direction of thermal flow, 5 – two temperature sensors,
6 – the data recorder. Fig. 2 shows such a device in practice.

Fig. 1: Principle of simultaneous measurement of λ and c.

For the reliable identification of λ and c the technical standards require the analy-
sis of uncertainties of measurements, see [3]. We shall see that in our approach such
analysis will be available and using the same numerical technique as is used for the
identification of the deterministic values of λ and c.
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Fig. 2: Measurement of basic thermal technical characteristics in the laboratory.

3. An inverse problem in heat conduction

Let l, L and H be three positive numbers, 0 < l < L << H, L − l << l.
The technical interpretation of l, L and H is evident from the simplified scheme at
Fig. 1: 2l is the thickness of the measured material sample, L− l is the thickness of
each of two aluminium plates, 2H = 2(L + h) denotes the total size of the whole
insulated system where h is the thickness of each of two massive insulation blocks.
Let us introduce the set A = {(−H,−L), (−L,−l), (−l, l), (l, L), (L,H)} of couples
of x-coordinates, too.

The above sketched classical formulation of the heat equation (1) can be (espe-
cially for layered structures) converted into the weak formulation

ζ(ϕ, Ṫ ) + λ(ϕ′, T ′) = r(ϕ, 1) + ϕ(a+)q+ − ϕ(a−)q− , (2)

satisfied for every test function ϕ from the Sobolev space W 1,2(a−, a+) where (a−, a+)
are elements of A, with (a priori unknown) interface heat fluxes q−(t) and q+(t); q−
and q+ here is the brief notation for heat fluxes at the interfaces x = a− and x = a+

The dot symbol in (2) is reserved for partial derivatives by t, the prime symbol for

partial derivatives by x, (ψ, ψ̃) are scalar products in the Lebesgue space L2(a−, a+)

for any ψ and ψ̃ from this space, i. e.

(ψ, ψ̃) =

∫ a+

a−
ψ(x) ψ̃(x) dx .

We suppose that for t = 0 the temperature T0(x) is known everywhere (for −H ≤
x ≤ H), thus the initial condition T (x, 0) = T0(x) can be prescribed. We also
assume that the whole system is perfectly insulated from the external environment
(the experiment cannot be too long in practice), thus for x = −H and x = H no
heat fluxes q− or q+ are considered. The unknowns are T (x, t) everywhere for any
positive time t, and (time-independent) λ and ζ only for −l ≤ x ≤ l (inside the
tested sample).
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Alternatively the weak formulation (2) could be rewritten for (a−, a+) = (−H, H)
with test functions ϕ ∈ W 1,2(−H, H); then all q− and q+ seemingly vanish. However,
in such notation all scalar products λ(. , .) and ζ(. , .) would obtain more complicated
forms (. , λ .) and (. , ζ .) with piecewise continuous functions λ and ζ, whose values
are not known a priori everywhere. Consequently it is not possible to avoid all
explicit calculations of q− and q+, at least those corresponding to x = −l and x = l.

The identification of λ and ζ is based on the comparison of the temperatures
T (−l, ts) and T (l, ts) from numerical simulation with the temperatures

Ts− ≈ T (−l, ts) , Ts+ ≈ T (l, ts) , (3)

obtained from sensors in a finite integer number S of times ts, s ∈ {1, . . . , S}; in
such discrete time steps the heat generator is able to guarantee the constant values
rs = r(ts) of r from the right-hand side of (2) inside the whole heated plate (where
l < x < L). Unlike the much more general approach of [4], thanks to the very simple
arrangement of the experiment, we are able to apply the semi-analytical Fourier
method here. Following [1, pp. 229, 256], instead of T (x, t) in (2) we can consider
TN(x, t) with a large integer N (theoretically N →∞) in the form

TN(x, t) = TN(x, t∗) +
N∑

n=0

ϕn(x̃) αn(t− t∗) (4)

with x̃ = (x − a−)/(a+ − a−) and 0 < t∗ < t, and attempt (once the system ϕn(x̃),
0 ≤ x̃ ≤ 1, n ∈ {1, . . . , N}, is available) to find the approximate solution TN(x, t)
of (2); in practice we are allowed to set (step by step) t∗ = ts−1 and t = ts.

The one-dimensional discretization in the variable x enables us to apply the
method of lines: inserting TN(x, t) from (4) into (2), we obtain the system of N + 1
ordinary differential equations, whose general form is

aζMα̇ + a−1λKα = β+q+ − β−q− + arg , (5)

where (for simplicity) a = a+ − a− and

α(τ) = [α0(τ), . . . , αN(τ)]T, β− = [ϕ0(0), . . . , ϕn(0)]T, β+ = [ϕ0(1), . . . , ϕn(1)]T.

Let us remind that (5) must be formulated for each couple (a−, a+) ∈ A separately
and that r 6= 0 for (a−, a+) = (l, L) only. The concrete form of the square “mass”
and “stiffness” matrices M,K, generated by (ϕm, ϕn) and (ϕ′m, ϕ′n) with m,n ∈
{0, . . . , N}, and of the “load” vector g, generated by (ϕm, 1) with m ∈ {0, . . . , N},
depends on the practical choice of ϕ1, . . . , ϕN . The application of the classical Fourier
basis (like [1, p. 139]) brings complications with averaged boundary values; thus the
standard finite element technique, the wavelet analysis or other meshless approaches
seem to be more efficient.
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The solution α(τ) of the system (5) can be analyzed with the help of real eigen-
values ωn, n ∈ {0, . . . N}, obtained from the characteristic equation

det(λK − a2ωnζM) = 0 ,

and of the corresponding real eigenvectors; alternatively this can be rewritten as

λKV = a2ζMV Ω ,

where Ω is a diagonal square matrix of eigenvalues and V is a square matrix com-
pound from column eigenvectors. All particular steps of this calculation can be found
in [7]; the final result is

α(τ) = V




τ/(aζ)
λ/(a2ζ2ω1)(1− exp (−a2ζω1τ/λ))

...
λ/(a2ζ2ωN)(1− exp (−a2ζωNτ/λ))


 (6)

×V TM−1(β+q+ − β−q− + arg) .

Nevertheless, q− and q+ at all material interfaces are still undetermined. No
external fluxes are allowed, thus only four unknown values q−, q+ at such interfaces
occur. At the same interfaces four continuity conditions for T are available, conse-
quently all needed q−, q+ can be evaluated formally from the corresponding regular
system of 4 linear algebraic equations with 4 variables. Then we have

TN(−l, ts) = TN(−l, ts−1) + Gs−(λ, ζ) , TN(l, ts) = TN(l, ts−1) + Gs+(λ, ζ)

with two complicated functions Gs−, Gs+ of two variables λ, ζ, coming from the
insertion of (6) into (4) for x = −l and x = l; the software code for the evaluation of
Gs−, Gs+ makes use of MAPLE. Now we are ready to specify the vague relations (3):
the minimum of a function

Φ(λ, ζ) =
1

2

∑

σ∈{−,+}

S∑
s=1

(TN(σl, ts)− Tsσ)2

can be found with the help of the least squares method and (for a sufficiently good
estimate of λ, ζ) of the Newton iterations, completed by an effective algorithm for the
evaluation of the first and second partial derivatives of Φ needed in such iterations.

Material engineers in similar situations commonly use an “ad hoc” algorithm:
i) set some rough estimate of λ and ζ; ii) by using some “black box” software like
ANSYS, calculate the distribution of T in time, including that at the measured
points; iii) if the differences between the measured and calculated values of T are
large (which is decided from experience), choose another couple (λ, ζ) by using some
heuristic technique (bi-sectioning, for example), and return to step ii), otherwise
finish. The convergence of such approach is slow and doubtful; our semi-analytic
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Fig. 3: Characteristics λ, ζ, obtained by the minimization of Φ(λ, ζ).

method seems to be much more efficient. Nevertheless, the new revisions of commer-
cial software packages such as ANSYS involve also certain support of the analysis
of inverse problems, more advanced than the above criticized one. A typical distri-
bution of Φ(λ, ζ) for the (nearly) homogenized insulation layer, making use of the
wood waste, is shown in Fig. 3.

4. Stochastic analysis

The analysis of uncertainties in measurements is an important part of the ac-
creditation process of each technical laboratory. Most definitions of uncertainty
in technical standards are rather vague, as “uncertainty is a parameter associated
with the result of a measurement, that characterises the dispersion of the values
that could reasonably be attributed to the measurand” in [3, p. 9]. However, to
respect such requirements, the identification of thermal technical characteristics λ
and ζ for new insulation materials should contain a deep analysis of uncertainty
sources and components and their relation to random and systematic errors in mea-
surements, concerning: i) the size of the material sample and the smoothness of
its surface, ii) the correctness of setting of generated heat, iii) the correctness of
temperature measurements from both sensors, iii) the preservation of assumed zero
boundary fluxes, iv) the validity of homogenized isotropic constant values of the
chararacteristics, v) the acceptability of physical, mathematical, and computational
simplifications, vi) the numerical error analysis, etc.

For illustration, following [3, pp. 11, 24], we can reduce the analysis of uncer-
tainty components to the analysis of standard deviations, assuming: i) the uncorre-
lated quantities rs (adjusted values) and Tσs (measured values) with s ∈ {1, . . . , S},
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σ ∈ {−, +}, ii) the normal (Gaussian) probability distribution (justified by the cen-
tral limit theorem), and iii) the uncertainty wr of all variables rs and the uncertainty
wT of all variables Ts. Then the uncertainties wλ and wζ of both material character-
istics λ, ζ can be calculated as

wλ =

√√√√w2
r

S∑
s=1

(∂λ/∂rs)2 + w2
T

∑

σ∈{−,+}

S∑
s=1

(∂λ/∂Tsσ)2 ,

wζ =

√√√√w2
r

S∑
s=1

(∂ζ/∂rs)2 + w2
T

∑

σ∈{−,+}

S∑
s=1

(∂ζ/∂Tsσ)2 .

A detailed study shows that evaluation of the above presented uncertainties can
use the same algorithms as those in the Newton iteration process; this makes all
computations relatively simple and inexpensive. More complicated formulae are
needed in some other cases, e. g. in case of the uncertain thickness l.

Recently in [5] the approach presented in this paper has been applied to a room
microclimate oriented study of the thermal behaviour of many new experimental
materials for insulation layers in buildings. Unfortunately, especially the values of
ζ (much more than those of λ) obtained both from the literature and from other
experiments under similar conditions have a very large dispersion; thus (although
the existence of solutions can be verified formally and the implemented software
returns rather low values of Φ(λ, ζ) – for illustration see Fig. 3 again) the validity of
results, taking into account all potential sources of errors and inaccuracies, should
be examined properly in the near future.
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[7] S. Šťastńık, J. Vala, H. Kmı́nová: Identification of basic thermal technical char-
acteristics of building materials. Kybernetika (Acad. Sci. Czech Rep.), to ap-
pear.

246



DISCRETE GREEN’S FUNCTION AND MAXIMUM PRINCIPLES∗

Tomáš Vejchodský, Pavel Šoĺın

Abstract

In this paper the discrete Green’s function (DGF) is introduced and its fundamen-
tal properties are proven. Further it is indicated how to use these results to prove
the discrete maximum principle for 1D Poisson equation discretized by the hp-FEM
with pure Dirichlet or with mixed Dirichlet-Neumann boundary conditions and with
piecewise constant coefficient.

1. Introduction

The topic of discrete maximum principles (DMP) is already studied for several
decades [1]. The problematics of DMP can be simplified to the question under what
conditions a numerical method produces nonnegative solution in situations when the
exact solution is known to be nonnegative. Numerical methods that satisfies DMP
are useful and desirable for problems where naturally nonnegative quantities like
temperature, concentration, or density are computed.

Results for the finite element methods (FEM) and for various problems are well
known, see e.g. [2, 4, 5, 6] and references therein. These works, however, deal with
piecewise linear approximations only. The results about higher order approximations
are much scarce, see [3, 11] and recent works of the authors [10, 7, 8, 9]. The reason
is that the condition for a piecewise linear function to be nonnegative is trivial but
suitable condition for piecewise polynomial function is very difficult to obtain.

In this point of view the discrete Green’s function turned out to be a very useful
tool for investigation of DMP for higher order finite element methods.

2. Model problem

Although the theory is applicable for very general class of problems, we restrict
ourselves for the clarity of explanation to relatively simple linear elliptic problem.
The model problem is formulated in the classical way as follows

− div(A∇u) + cu = f in Ω

u = 0 on ΓD (1)

αu + (A∇u) · ν = g on ΓN.

∗The first author has been supported by grant No. 201/04/P021 of the Grant Agency of the Czech
Republic and by the Institutional Research Plan No. AV0Z10190503 of the Academy of Sciences
of the Czech Republic. The second author has been supported in part by the U.S. Department
of Defense under Grant No. 05PR07548-00, by the NSF Grant No. DMS-0532645, and by Grant
Agency of the Czech Republic project No. 102-05-0629. This support is gratefully acknowledged.
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Here Ω is a domain with Lipschitz continues boundary in Rd. The boundary ∂Ω is
split into two disjoint parts ΓD and ΓN. The matrix A = A(x) ∈ Rd×d is uniformly
positive definite and the coefficients c = c(x) and α = α(x) are nonnegative. The
unit outward normal to ∂Ω is denoted by ν.

To give rigorous meaning to the model problem, we introduce the concept of weak
solution. For that reason we define the space

V = {u ∈ H1(Ω) : u = 0 on ΓD},

where the values on ∂Ω are understood in the sense of traces. The weak solution
u ∈ V of (1) is defined by identity

a(u, v) = F (v) ∀v ∈ V. (2)

The bilinear form a : V × V 7→ R and the linear functional F : V 7→ R are given by

a(u, v) =

∫

Ω

(A∇u) · ∇v dx +

∫

Ω

cuv dx +

∫

ΓN

αuv ds,

F (v) =

∫

Ω

fv dx +

∫

ΓN

gv ds.

These integrals are well defined if A ∈ [
L∞(Ω)

]d×d
, c ∈ L∞(Ω), α ∈ L∞(ΓN),

f ∈ L2(Ω), and g ∈ L2(ΓN). If meas ΓD 6= 0 or c 6≡ 0 or α 6≡ 0 then by Lax-Milgram
lemma the weak solution exists and is unique.

Let us recall the standard definition of Green’s function for problem (2). For
almost every y ∈ Ω, the Green’s function Gy ∈ V is given as a unique solution to

a(w, Gy) = δy(w) ∀w ∈ V. (3)

The symbol δy stands for the Dirac functional. This δy is well defined for all continous
function w by δy(w) = w(y). This definition can be augmented for w from V by the
Hahn-Banach theorem.

By (2) and (3) we infer the fundamental Kirchhoff-Helmholtz representation for-
mula

u(y) = δy(u) = a(u,Gy) = F (Gy).

Hence for our model problem

u(y) =

∫

Ω

f(x)Gy(x) dx +

∫

ΓN

g(s)Gy(s) ds.

3. Discretization by hp-FEM

In the hp version of the finite element method (hp-FEM) we vary both the sizes h
and polynomial degrees p of elements. To discretize our model problem (2) by the
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Fig. 1: A 1D mesh Thp with elements Ki of polynomial degrees pi, i = 1, 2, . . . , M .

hp-FEM we assume the domain Ω to be polytopic. We introduce simplicial parti-
tion Thp of Ω into M elements and we endow each element Ki ∈ Thp, i = 1, 2, . . . , M ,
with an arbitrary polynomial degree pi ≥ 1. See Figure 1 for a 1D illustration.

The hp-FEM mesh Thp defines the finite element space

Vhp = {vhp ∈ V : vhp|Ki
∈ P pi(Ki) for all Ki ∈ Thp},

where P pi(Ki) stands for the space of polynomials on Ki of degree at most pi. The
hp-FEM solution uhp ∈ Vhp is then defined by identity

a(uhp, vhp) = F (vhp) ∀vhp ∈ Vhp. (4)

4. Discrete Green’s function and its properties

The discrete Green’s function (DGF) is defined in analogy with the continuous
case, cf. (3). For all y ∈ Ω, define the discrete Green’s function Ghp,y ∈ Vhp by

a(whp, Ghp,y) = δy(whp) ∀whp ∈ Vhp. (5)

It is convenient to put Ghp(x, y) = Ghp,y(x). The combination of (4) and (5) gives
again the representation formula

uhp(y) = δy(uhp) = a(uhp, Ghp,y) = F (Ghp,y).

For our model problem this becomes

uhp(y) =

∫

Ω

f(x)Ghp(x, y) dx +

∫

ΓN

g(s)Ghp(s, y) ds. (6)

In contrast to the continuous case the DGF can be easily expressed through the
inverse stiffness matrix, cf. [2].

Lemma 4.1. Let {ϕ1, ϕ2, . . . , ϕN} be a basis in Vhp. If A ∈ RN×N be a matrix with
entries Aij = a(ϕj, ϕi), 1 ≤ i, j ≤ N , then

Ghp(x, y) =
N∑

j=1

N∑

k=1

A−1
jk ϕk(x)ϕj(y), (7)

where A−1
jk are entries of A−1, i.e.,

N∑
j=1

AijA
−1
jk = δik (Kronecker symbol).
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Proof. The proof follows from (5) and can be found in [8].

The following two corollaries follow directly from Lemma 4.1.

Corollary 4.1. If a(·, ·) is symmetric then Ghp(x, y) = Ghp(y, x).

Corollary 4.2. Let {l1, l2, . . . , lN} be a basis of Vhp such that a(li, lj) = δij. Then

Ghp(x, y) =
N∑

i=1

li(x)li(y).

Since the nonnegativity of DGF is fundamental for discrete maximum principles,
see Theorem 5.1 below, the following lemma is of particular interest.

Lemma 4.2. If the bilinear form a(·, ·) is symmetric and if a(vhp, vhp) > 0 for all
0 6= vhp ∈ Vhp then Ghp(x, x) > 0 for all x ∈ Ω.

Proof. Let {ϕ1, ϕ2, . . . , ϕN} be a basis in Vhp. By the assumptions the stiffness
matrix Aij = a(ϕj, ϕi), 1 ≤ i, j ≤ N , is symmetric and positive definite as well
as its invers matrix. Thus, by Lemma 4.1, Ghp(x, x) = ϕ(x)T A−1ϕ(x) > 0, where
ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕN(x))T . Notice that ϕ(x) 6= 0 for all x ∈ Ω since {ϕi(x)}
is a basis in Vhp.

5. Application to the discrete maximum principles

These results about DGF can be used to proof certain qualitative properties of the
discrete solution. Let us start with the comparison principle for our model problem.

Definition 5.1. The problem (4) satisfies the discrete comparison principle if

f ≥ 0 and g ≥ 0 ⇒ uhp ≥ 0.

The following theorem is crucial for the analysis of discrete comparison principle
via DGF.

Theorem 5.1. Problem (4) satisfies the discrete comparison principle if and only if
the corresponding discrete Green’s function Ghp(x, y) defined by (5) is nonnegative
in Ω2.

Proof. By (7), the discrete Green’s function Ghp(x, z) is continuous up to the bound-
ary of Ω2. The rest follows immediately from representation formula (6).

For certain problems the DGF can be explicitly expressed and its nonnegativity
can be analyzed. We mention two of our results about discrete maximum principle.
Both are based on Theorem 5.1. A crucial role in these results plays quantity

H∗
rel(p) = 1, for p = 1,

H∗
rel(p) = 1 +

1

2
min

(ξ,η)∈[−1,1]2
l0(ξ)l0(η)

p∑

k=2

κk(ξ)κk(η), for p ≥ 2.
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Here, l0(ξ) = (1 − ξ)/2 and κk(ξ) =

√
2k − 1

2

4

k(1− k)
P ′

k−1(ξ), where Pk(ξ) stand

for the Legendre polynomials of degree k and prime denotes the derivative.

Theorem 5.2. Let us consider simplified problem (4) in 1D setting with homogeneous
Dirichlet boundary conditions, i.e., Ω = (ā, b̄), A = 1, c = 0, α = 0, ΓD = {ā, b̄},
and ΓN = ∅. Let ā = x0 < x1 < . . . < xM = b̄ be a partition of the domain and let
pi ≥ 1 be polynomial degrees assigned to elements Ki = [xi−1, xi], i = 1, 2, . . . ,M . If

xi − xi−1

b̄− ā
≤ H∗

rel(pi) for all i = 1, 2, . . . , M, (8)

then this problem satisfies the discrete comparison principle.

Theorem 5.3. Let us consider simplified problem (4) in 1D setting with mixed bound-
ary conditions, i.e., Ω = (ā, b̄), A = 1, c = 0, α = 0, ΓD = {ā} and ΓN = {b̄}. Let
ā = x0 < x1 < . . . < xM = b̄ be a partition of the domain and let pi ≥ 1 be polynomial
degrees assigned to elements Ki = [xi−1, xi], i = 1, 2, . . . ,M . If

H∗
rel(pi) ≥ 0 for all i = 1, 2, . . . , M, (9)

then this problem satisfies the discrete comparison principle.

Proofs of Theorems 5.2 and 5.3 are given in [8] and [9], respectively. In the same
papers we verified that Hrel(p) ≥ 9/10 for 1 ≤ p ≤ 100. Thus, condition (9) is
satisfied for these values of p and the condition (8) can be strengthened to
(xi − xi−1)/(b̄ − ā) ≤ 9/10 which means that the discrete comparison principle is
valid if all elements are shorter then 90 % of the length of the domain Ω.

Both the results from Theorems 5.2 and 5.3 can be generalized to the case of piece-
wise constant coefficient A. The case of mixed boundary conditions (Theorem 5.3)
remains valid even for piecewise constant A, i.e., the comparison principle is guar-
anteed for all meshes with polynomial degrees not exceeding 100. The case of pure
Dirichlet boundary conditions (Theorem 5.2) needs reformulation of condition (8) in
the following way

h̃i

M∑
k=1

h̃k

≤ H∗
rel(pi) for all i = 1, 2, . . . , M. (10)

Here h̃i = (xi − xi−1)/Ai, i = 1, 2, . . . , M , mean modified element lengths and
Ai is the constant value of A(x) on the element Ki. Notice that the sum in the
denominator in (10) can be interpretted as a length of a modified domain. More
details about the case with piecewise constant coefficient can be found in [10].

Finally, let us recall that for problems treated in Theorems 5.2 and 5.3 the discrete
comparison principle implies the discrete maximum principle. The discrete maximum
principle states that in the case of nonpositive f and nonpositive g the maximum
of uhp is attained in the interior of Ω.
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[6] S. Korotov, M. Kř́ıžek, P. Neittaanmäki: Weakened acute type condition for
tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70,
2000, 107–119.

[7] P. Šoĺın, T. Vejchodský: On a weak discrete maximum principle for hp-FEM.
JCAM, 2006 (accepted).
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Ústav technické mat., Fak. strojńı ČVUT
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Žitná 26, 115 67 Praha 1; and
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Univerzitńı 20, 306 14 Plzeň
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Doleǰskova 5, 182 00 Praha 8
e-mail: jdobias@it.cas.cz

253
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Žitná 25, 115 67 Praha 1
e-mail: krizek@math.cas.cz
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Václav Kučera, Mgr.
Katedra numerické mat., MFF UK
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Univerzitńı 22, 306 14 Plzeň
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Ústav informatiky AV ČR
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Žitná 25, 115 67 Praha 1
e-mail: somer@cua.edu

Rolf Stenberg, prof.
Institute of Mathematics,
Helsinki University of Technology
P.O. Box 1100, Helsinki
FIN-02015 HUT Finland
e-mail: Rolf.Stenberg@hut.fi
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Miroslav Tůma, prof. Ing., CSc.
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Ústav informatiky AV ČR
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